Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Différenciez les deux côtés de l’équation.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.3
Remplacez toutes les occurrences de par .
Étape 2.2.3
Réécrivez comme .
Étape 2.2.4
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3.3
Remplacez toutes les occurrences de par .
Étape 2.3.4
Réécrivez comme .
Étape 2.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.6
Déplacez à gauche de .
Étape 2.3.7
Multipliez par .
Étape 2.4
Évaluez .
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4.3
Multipliez par .
Étape 2.5
Simplifiez
Étape 2.5.1
Appliquez la propriété distributive.
Étape 2.5.2
Multipliez par .
Étape 2.5.3
Remettez les termes dans l’ordre.
Étape 3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4
Réformez l’équation en définissant le côté gauche égal au côté droit.
Étape 5
Étape 5.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 5.1.1
Ajoutez aux deux côtés de l’équation.
Étape 5.1.2
Ajoutez aux deux côtés de l’équation.
Étape 5.2
Factorisez à partir de .
Étape 5.2.1
Factorisez à partir de .
Étape 5.2.2
Factorisez à partir de .
Étape 5.2.3
Factorisez à partir de .
Étape 5.3
Divisez chaque terme dans par et simplifiez.
Étape 5.3.1
Divisez chaque terme dans par .
Étape 5.3.2
Simplifiez le côté gauche.
Étape 5.3.2.1
Annulez le facteur commun de .
Étape 5.3.2.1.1
Annulez le facteur commun.
Étape 5.3.2.1.2
Réécrivez l’expression.
Étape 5.3.2.2
Annulez le facteur commun de .
Étape 5.3.2.2.1
Annulez le facteur commun.
Étape 5.3.2.2.2
Divisez par .
Étape 5.3.3
Simplifiez le côté droit.
Étape 5.3.3.1
Annulez le facteur commun à et .
Étape 5.3.3.1.1
Factorisez à partir de .
Étape 5.3.3.1.2
Annulez les facteurs communs.
Étape 5.3.3.1.2.1
Annulez le facteur commun.
Étape 5.3.3.1.2.2
Réécrivez l’expression.
Étape 5.3.3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.3.3.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 5.3.3.3.1
Multipliez par .
Étape 5.3.3.3.2
Réorganisez les facteurs de .
Étape 5.3.3.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.3.3.5
Multipliez par en additionnant les exposants.
Étape 5.3.3.5.1
Multipliez par .
Étape 5.3.3.5.1.1
Élevez à la puissance .
Étape 5.3.3.5.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.3.3.5.2
Additionnez et .
Étape 5.3.3.6
Réécrivez comme .
Étape 5.3.3.7
Factorisez à partir de .
Étape 5.3.3.8
Factorisez à partir de .
Étape 5.3.3.9
Placez le signe moins devant la fraction.
Étape 6
Remplacez par.