Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.3
Associez et .
Étape 1.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.5
Simplifiez le numérateur.
Étape 1.2.5.1
Multipliez par .
Étape 1.2.5.2
Soustrayez de .
Étape 1.2.6
Placez le signe moins devant la fraction.
Étape 1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4
Simplifiez
Étape 1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.4.2
Associez des termes.
Étape 1.4.2.1
Multipliez par .
Étape 1.4.2.2
Additionnez et .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Appliquez les règles de base des exposants.
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Multipliez les exposants dans .
Étape 2.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.2
Associez et .
Étape 2.2.2.3
Placez le signe moins devant la fraction.
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.5
Associez et .
Étape 2.6
Associez les numérateurs sur le dénominateur commun.
Étape 2.7
Simplifiez le numérateur.
Étape 2.7.1
Multipliez par .
Étape 2.7.2
Soustrayez de .
Étape 2.8
Placez le signe moins devant la fraction.
Étape 2.9
Associez et .
Étape 2.10
Multipliez par .
Étape 2.11
Multipliez.
Étape 2.11.1
Multipliez par .
Étape 2.11.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .