Calcul infinitésimal Exemples

Résoudre l''équation différentielle y'=y
Étape 1
Réécrivez l’équation différentielle.
Étape 2
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez les deux côtés par .
Étape 2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun.
Étape 2.2.2
Réécrivez l’expression.
Étape 2.3
Réécrivez l’équation.
Étape 3
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez une intégrale de chaque côté.
Étape 3.2
L’intégrale de par rapport à est .
Étape 3.3
Appliquez la règle de la constante.
Étape 3.4
Regroupez la constante d’intégration du côté droit comme .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 4.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 4.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Réécrivez l’équation comme .
Étape 4.3.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 5
Regroupez les termes constants.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Réécrivez comme .
Étape 5.2
Remettez dans l’ordre et .
Étape 5.3
Combinez des constantes avec le plus ou le moins.