Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Étape 1.2.1
Évaluez la limite.
Étape 1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.1.2
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 1.2.1.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.2.1.5
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.2.1.6
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.2.2
Évaluez la limite de en insérant pour .
Étape 1.2.3
Simplifiez la réponse.
Étape 1.2.3.1
Simplifiez chaque terme.
Étape 1.2.3.1.1
Multipliez .
Étape 1.2.3.1.1.1
Multipliez par .
Étape 1.2.3.1.1.2
Multipliez par .
Étape 1.2.3.1.2
Soustrayez de .
Étape 1.2.3.1.3
La valeur exacte de est .
Étape 1.2.3.1.4
Multipliez par .
Étape 1.2.3.2
Soustrayez de .
Étape 1.3
Évaluez la limite du dénominateur.
Étape 1.3.1
Évaluez la limite.
Étape 1.3.1.1
Placez la limite à l’intérieur du logarithme.
Étape 1.3.1.2
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.3.1.3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.3.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.3.2
Évaluez la limite de en insérant pour .
Étape 1.3.3
Simplifiez la réponse.
Étape 1.3.3.1
Simplifiez chaque terme.
Étape 1.3.3.1.1
Multipliez par .
Étape 1.3.3.1.2
Multipliez par .
Étape 1.3.3.2
Soustrayez de .
Étape 1.3.3.3
Le logarithme naturel de est .
Étape 1.3.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Évaluez .
Étape 3.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.1.2
La dérivée de par rapport à est .
Étape 3.3.1.3
Remplacez toutes les occurrences de par .
Étape 3.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.6
Multipliez par .
Étape 3.3.7
Soustrayez de .
Étape 3.3.8
Multipliez par .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Additionnez et .
Étape 3.6
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.6.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.6.2
La dérivée de par rapport à est .
Étape 3.6.3
Remplacez toutes les occurrences de par .
Étape 3.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.9
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.10
Multipliez par .
Étape 3.11
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.12
Additionnez et .
Étape 3.13
Associez et .
Étape 4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5
Étape 5.1
Associez et .
Étape 5.2
Associez et .
Étape 6
Étape 6.1
Annulez le facteur commun.
Étape 6.2
Divisez par .
Étape 7
Divisez la limite en utilisant la règle du produit des limites sur la limite lorsque approche de .
Étape 8
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 9
Placez le terme hors de la limite car il est constant par rapport à .
Étape 10
Évaluez la limite de qui est constante lorsque approche de .
Étape 11
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 12
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 13
Évaluez la limite de qui est constante lorsque approche de .
Étape 14
Placez le terme hors de la limite car il est constant par rapport à .
Étape 15
Étape 15.1
Évaluez la limite de en insérant pour .
Étape 15.2
Évaluez la limite de en insérant pour .
Étape 16
Étape 16.1
Simplifiez chaque terme.
Étape 16.1.1
Multipliez par .
Étape 16.1.2
Multipliez par .
Étape 16.2
Soustrayez de .
Étape 16.3
Multipliez par .
Étape 16.4
Multipliez .
Étape 16.4.1
Multipliez par .
Étape 16.4.2
Multipliez par .
Étape 16.5
Soustrayez de .
Étape 16.6
La valeur exacte de est .