Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Étape 5.1
Appliquez la propriété distributive.
Étape 5.2
Élevez à la puissance .
Étape 5.3
Utilisez la règle de puissance pour associer des exposants.
Étape 5.4
Additionnez et .
Étape 5.5
Élevez à la puissance .
Étape 5.6
Élevez à la puissance .
Étape 5.7
Utilisez la règle de puissance pour associer des exposants.
Étape 5.8
Additionnez et .
Étape 6
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 11
Simplifiez
Étape 12
Remettez les termes dans l’ordre.
Étape 13
La réponse est la dérivée première de la fonction .