Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 4
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7
Appliquez la règle de la constante.
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Étape 9.1
Laissez . Déterminez .
Étape 9.1.1
Différenciez .
Étape 9.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 9.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 9.1.4
Multipliez par .
Étape 9.2
Réécrivez le problème en utilisant et .
Étape 10
Associez et .
Étape 11
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 12
L’intégrale de par rapport à est .
Étape 13
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 14
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 15
Séparez l’intégrale unique en plusieurs intégrales.
Étape 16
Appliquez la règle de la constante.
Étape 17
Étape 17.1
Laissez . Déterminez .
Étape 17.1.1
Différenciez .
Étape 17.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 17.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 17.1.4
Multipliez par .
Étape 17.2
Réécrivez le problème en utilisant et .
Étape 18
Associez et .
Étape 19
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 20
L’intégrale de par rapport à est .
Étape 21
Simplifiez
Étape 22
Étape 22.1
Remplacez toutes les occurrences de par .
Étape 22.2
Remplacez toutes les occurrences de par .
Étape 23
Étape 23.1
Associez et .
Étape 23.2
Appliquez la propriété distributive.
Étape 23.3
Associez et .
Étape 23.4
Multipliez .
Étape 23.4.1
Multipliez par .
Étape 23.4.2
Multipliez par .
Étape 23.5
Associez et .
Étape 23.6
Appliquez la propriété distributive.
Étape 23.7
Associez et .
Étape 23.8
Multipliez .
Étape 23.8.1
Multipliez par .
Étape 23.8.2
Multipliez par .
Étape 24
Remettez les termes dans l’ordre.
Étape 25
La réponse est la dérivée première de la fonction .