Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Étape 3.1
Simplifiez
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.1.1
Factorisez à partir de .
Étape 3.1.1.2
Factorisez à partir de .
Étape 3.1.1.3
Factorisez à partir de .
Étape 3.1.2
Annulez les facteurs communs.
Étape 3.1.2.1
Factorisez à partir de .
Étape 3.1.2.2
Annulez le facteur commun.
Étape 3.1.2.3
Réécrivez l’expression.
Étape 3.2
Appliquez les règles de base des exposants.
Étape 3.2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 3.2.2
Multipliez les exposants dans .
Étape 3.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.2.2
Multipliez par .
Étape 4
Multipliez .
Étape 5
Étape 5.1
Multipliez par en additionnant les exposants.
Étape 5.1.1
Utilisez la règle de puissance pour associer des exposants.
Étape 5.1.2
Soustrayez de .
Étape 5.2
Réécrivez comme .
Étape 6
Séparez l’intégrale unique en plusieurs intégrales.
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 10
Étape 10.1
Simplifiez
Étape 10.2
Simplifiez
Étape 10.2.1
Multipliez par .
Étape 10.2.2
Multipliez par .
Étape 11
La réponse est la dérivée première de la fonction .