Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2.2
La dérivée de par rapport à est .
Étape 1.2.2.3
Remplacez toutes les occurrences de par .
Étape 1.2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.7
Multipliez par .
Étape 1.2.8
Additionnez et .
Étape 1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4
Simplifiez
Étape 1.4.1
Additionnez et .
Étape 1.4.2
Réorganisez les facteurs de .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.5
Multipliez par .
Étape 2.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.7
Additionnez et .
Étape 2.4
Élevez à la puissance .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Utilisez la règle de puissance pour associer des exposants.
Étape 2.7
Additionnez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Réécrivez l’expression.
Étape 4.2.2
Annulez le facteur commun de .
Étape 4.2.2.1
Annulez le facteur commun.
Étape 4.2.2.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Annulez le facteur commun à et .
Étape 4.3.1.1
Factorisez à partir de .
Étape 4.3.1.2
Annulez les facteurs communs.
Étape 4.3.1.2.1
Factorisez à partir de .
Étape 4.3.1.2.2
Annulez le facteur commun.
Étape 4.3.1.2.3
Réécrivez l’expression.
Étape 4.3.2
Divisez par .
Étape 5
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 6
Étape 6.1
La valeur exacte de est .
Étape 7
Ajoutez aux deux côtés de l’équation.
Étape 8
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Étape 8.2.1
Annulez le facteur commun de .
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Étape 8.3.1
Simplifiez chaque terme.
Étape 8.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 8.3.1.2
Annulez le facteur commun de .
Étape 8.3.1.2.1
Annulez le facteur commun.
Étape 8.3.1.2.2
Réécrivez l’expression.
Étape 9
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 10
Étape 10.1
Simplifiez .
Étape 10.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 10.1.2
Associez les fractions.
Étape 10.1.2.1
Associez et .
Étape 10.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 10.1.3
Simplifiez le numérateur.
Étape 10.1.3.1
Multipliez par .
Étape 10.1.3.2
Soustrayez de .
Étape 10.2
Ajoutez aux deux côtés de l’équation.
Étape 10.3
Divisez chaque terme dans par et simplifiez.
Étape 10.3.1
Divisez chaque terme dans par .
Étape 10.3.2
Simplifiez le côté gauche.
Étape 10.3.2.1
Annulez le facteur commun de .
Étape 10.3.2.1.1
Annulez le facteur commun.
Étape 10.3.2.1.2
Divisez par .
Étape 10.3.3
Simplifiez le côté droit.
Étape 10.3.3.1
Simplifiez chaque terme.
Étape 10.3.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 10.3.3.1.2
Annulez le facteur commun de .
Étape 10.3.3.1.2.1
Factorisez à partir de .
Étape 10.3.3.1.2.2
Annulez le facteur commun.
Étape 10.3.3.1.2.3
Réécrivez l’expression.
Étape 11
La solution de l’équation est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Étape 13.1
Simplifiez chaque terme.
Étape 13.1.1
Appliquez la propriété distributive.
Étape 13.1.2
Associez et .
Étape 13.1.3
Annulez le facteur commun de .
Étape 13.1.3.1
Annulez le facteur commun.
Étape 13.1.3.2
Réécrivez l’expression.
Étape 13.2
Simplifiez en soustrayant des nombres.
Étape 13.2.1
Soustrayez de .
Étape 13.2.2
Additionnez et .
Étape 13.3
La valeur exacte de est .
Étape 13.4
Multipliez par .
Étape 14
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 15
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Étape 15.2.1
Simplifiez chaque terme.
Étape 15.2.1.1
Simplifiez chaque terme.
Étape 15.2.1.1.1
Appliquez la propriété distributive.
Étape 15.2.1.1.2
Associez et .
Étape 15.2.1.1.3
Annulez le facteur commun de .
Étape 15.2.1.1.3.1
Annulez le facteur commun.
Étape 15.2.1.1.3.2
Réécrivez l’expression.
Étape 15.2.1.2
Soustrayez de .
Étape 15.2.1.3
Additionnez et .
Étape 15.2.1.4
La valeur exacte de est .
Étape 15.2.1.5
Multipliez par .
Étape 15.2.2
Soustrayez de .
Étape 15.2.3
La réponse finale est .
Étape 16
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 17
Étape 17.1
Simplifiez chaque terme.
Étape 17.1.1
Appliquez la propriété distributive.
Étape 17.1.2
Associez et .
Étape 17.1.3
Annulez le facteur commun de .
Étape 17.1.3.1
Annulez le facteur commun.
Étape 17.1.3.2
Réécrivez l’expression.
Étape 17.1.4
Déplacez à gauche de .
Étape 17.2
Simplifiez en soustrayant des nombres.
Étape 17.2.1
Soustrayez de .
Étape 17.2.2
Additionnez et .
Étape 17.3
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 17.4
La valeur exacte de est .
Étape 17.5
Multipliez par .
Étape 17.6
Multipliez par .
Étape 18
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 19
Étape 19.1
Remplacez la variable par dans l’expression.
Étape 19.2
Simplifiez le résultat.
Étape 19.2.1
Simplifiez chaque terme.
Étape 19.2.1.1
Simplifiez chaque terme.
Étape 19.2.1.1.1
Appliquez la propriété distributive.
Étape 19.2.1.1.2
Associez et .
Étape 19.2.1.1.3
Annulez le facteur commun de .
Étape 19.2.1.1.3.1
Annulez le facteur commun.
Étape 19.2.1.1.3.2
Réécrivez l’expression.
Étape 19.2.1.1.4
Déplacez à gauche de .
Étape 19.2.1.2
Soustrayez de .
Étape 19.2.1.3
Additionnez et .
Étape 19.2.1.4
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 19.2.1.5
La valeur exacte de est .
Étape 19.2.1.6
Multipliez .
Étape 19.2.1.6.1
Multipliez par .
Étape 19.2.1.6.2
Multipliez par .
Étape 19.2.2
Soustrayez de .
Étape 19.2.3
La réponse finale est .
Étape 20
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 21