Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.2
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.2.3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.1.2.4
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.2.5
Placez le terme hors de la limite car il est constant par rapport à .
Étape 1.1.2.6
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.7
Évaluez les limites en insérant pour toutes les occurrences de .
Étape 1.1.2.7.1
Évaluez la limite de en insérant pour .
Étape 1.1.2.7.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.7.3
Évaluez la limite de en insérant pour .
Étape 1.1.2.8
Simplifiez la réponse.
Étape 1.1.2.8.1
Simplifiez chaque terme.
Étape 1.1.2.8.1.1
Élevez à la puissance .
Étape 1.1.2.8.1.2
Élevez à la puissance .
Étape 1.1.2.8.1.3
Multipliez par .
Étape 1.1.2.8.1.4
Multipliez par .
Étape 1.1.2.8.2
Additionnez et .
Étape 1.1.2.8.3
Soustrayez de .
Étape 1.1.2.8.4
Additionnez et .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Évaluez la limite.
Étape 1.1.3.1.1
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.3.1.2
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Étape 1.1.3.3.1
Additionnez et .
Étape 1.1.3.3.2
L’élévation de à toute puissance positive produit .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.4
Évaluez .
Étape 1.3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.4.3
Multipliez par .
Étape 1.3.5
Évaluez .
Étape 1.3.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.5.3
Multipliez par .
Étape 1.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7
Additionnez et .
Étape 1.3.8
Réécrivez comme .
Étape 1.3.9
Développez à l’aide de la méthode FOIL.
Étape 1.3.9.1
Appliquez la propriété distributive.
Étape 1.3.9.2
Appliquez la propriété distributive.
Étape 1.3.9.3
Appliquez la propriété distributive.
Étape 1.3.10
Simplifiez et associez les termes similaires.
Étape 1.3.10.1
Simplifiez chaque terme.
Étape 1.3.10.1.1
Multipliez par .
Étape 1.3.10.1.2
Multipliez par .
Étape 1.3.10.1.3
Multipliez par .
Étape 1.3.10.1.4
Multipliez par .
Étape 1.3.10.2
Additionnez et .
Étape 1.3.11
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.12
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.14
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.15
Multipliez par .
Étape 1.3.16
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.17
Additionnez et .
Étape 2
Étape 2.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 2.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 2.1.2
Évaluez la limite du numérateur.
Étape 2.1.2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.1.2.2
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2.1.2.3
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 2.1.2.4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2.1.2.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.1.2.6
Évaluez les limites en insérant pour toutes les occurrences de .
Étape 2.1.2.6.1
Évaluez la limite de en insérant pour .
Étape 2.1.2.6.2
Évaluez la limite de en insérant pour .
Étape 2.1.2.7
Simplifiez la réponse.
Étape 2.1.2.7.1
Simplifiez chaque terme.
Étape 2.1.2.7.1.1
Élevez à la puissance .
Étape 2.1.2.7.1.2
Multipliez par .
Étape 2.1.2.7.1.3
Multipliez par .
Étape 2.1.2.7.2
Soustrayez de .
Étape 2.1.2.7.3
Additionnez et .
Étape 2.1.3
Évaluez la limite du dénominateur.
Étape 2.1.3.1
Évaluez la limite.
Étape 2.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.1.3.1.2
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2.1.3.1.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.1.3.2
Évaluez la limite de en insérant pour .
Étape 2.1.3.3
Simplifiez la réponse.
Étape 2.1.3.3.1
Multipliez par .
Étape 2.1.3.3.2
Additionnez et .
Étape 2.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 2.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 2.3.1
Différenciez le numérateur et le dénominateur.
Étape 2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.3
Évaluez .
Étape 2.3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3.3
Multipliez par .
Étape 2.3.4
Évaluez .
Étape 2.3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.4.3
Multipliez par .
Étape 2.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.6
Additionnez et .
Étape 2.3.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.8
Évaluez .
Étape 2.3.8.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.8.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.8.3
Multipliez par .
Étape 2.3.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.10
Additionnez et .
Étape 2.4
Annulez le facteur commun à et .
Étape 2.4.1
Factorisez à partir de .
Étape 2.4.2
Factorisez à partir de .
Étape 2.4.3
Factorisez à partir de .
Étape 2.4.4
Annulez les facteurs communs.
Étape 2.4.4.1
Factorisez à partir de .
Étape 2.4.4.2
Annulez le facteur commun.
Étape 2.4.4.3
Réécrivez l’expression.
Étape 2.4.4.4
Divisez par .
Étape 3
Étape 3.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 3.2
Placez le terme hors de la limite car il est constant par rapport à .
Étape 3.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 4
Évaluez la limite de en insérant pour .
Étape 5
Étape 5.1
Multipliez par .
Étape 5.2
Additionnez et .