Calcul infinitésimal Exemples

Trouver la primitive racine carrée de 1-x
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez .
Étape 4.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Soustrayez de .
Étape 4.2
Réécrivez le problème en utilisant et .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Utilisez pour réécrire comme .
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Réécrivez comme .
Étape 9
Remplacez toutes les occurrences de par .
Étape 10
La réponse est la dérivée première de la fonction .