Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Laissez . Déterminez .
Étape 1.1.1
Différenciez .
Étape 1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.4
Multipliez par .
Étape 1.2
Remplacez la limite inférieure pour dans .
Étape 1.3
Simplifiez
Étape 1.3.1
Annulez le facteur commun à et .
Étape 1.3.1.1
Factorisez à partir de .
Étape 1.3.1.2
Annulez les facteurs communs.
Étape 1.3.1.2.1
Factorisez à partir de .
Étape 1.3.1.2.2
Annulez le facteur commun.
Étape 1.3.1.2.3
Réécrivez l’expression.
Étape 1.3.1.2.4
Divisez par .
Étape 1.3.2
Multipliez par .
Étape 1.4
Remplacez la limite supérieure pour dans .
Étape 1.5
Multipliez par .
Étape 1.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 1.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 2
Étape 2.1
Multipliez par la réciproque de la fraction pour diviser par .
Étape 2.2
Multipliez par .
Étape 2.3
Associez et .
Étape 2.4
Déplacez à gauche de .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
L’intégrale de par rapport à est .
Étape 5
Associez et .
Étape 6
Étape 6.1
Évaluez sur et sur .
Étape 6.2
Tout ce qui est élevé à la puissance est .
Étape 7
Étape 7.1
Associez les numérateurs sur le dénominateur commun.
Étape 7.2
Associez et .
Étape 7.3
Multipliez le numérateur par la réciproque du dénominateur.
Étape 7.4
Associez.
Étape 7.5
Multipliez par .
Étape 7.6
Déplacez à gauche de .
Étape 8
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 9