Calcul infinitésimal Exemples

Trouver le maximum et le minimum absolus sur l’intervalle f(x)=(4x^3)/3-4x+1 on -3 , 1
on ,
Étape 1
Déterminez les points critiques.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.2.3
Associez et .
Étape 1.1.1.2.4
Multipliez par .
Étape 1.1.1.2.5
Associez et .
Étape 1.1.1.2.6
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.6.1
Factorisez à partir de .
Étape 1.1.1.2.6.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.6.2.1
Factorisez à partir de .
Étape 1.1.1.2.6.2.2
Annulez le facteur commun.
Étape 1.1.1.2.6.2.3
Réécrivez l’expression.
Étape 1.1.1.2.6.2.4
Divisez par .
Étape 1.1.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.1.3.3
Multipliez par .
Étape 1.1.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.1.4.2
Additionnez et .
Étape 1.1.2
La dérivée première de par rapport à est .
Étape 1.2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Définissez la dérivée première égale à .
Étape 1.2.2
Ajoutez aux deux côtés de l’équation.
Étape 1.2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Divisez chaque terme dans par .
Étape 1.2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.2.1.1
Annulez le facteur commun.
Étape 1.2.3.2.1.2
Divisez par .
Étape 1.2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.3.1
Divisez par .
Étape 1.2.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 1.2.5
Toute racine de est .
Étape 1.2.6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.2.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.2.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 1.4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Remplacez par .
Étape 1.4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 1.4.1.2.1.2
Multipliez par .
Étape 1.4.1.2.1.3
Multipliez par .
Étape 1.4.1.2.2
Déterminez le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.2.1
Écrivez comme une fraction avec le dénominateur .
Étape 1.4.1.2.2.2
Multipliez par .
Étape 1.4.1.2.2.3
Multipliez par .
Étape 1.4.1.2.2.4
Écrivez comme une fraction avec le dénominateur .
Étape 1.4.1.2.2.5
Multipliez par .
Étape 1.4.1.2.2.6
Multipliez par .
Étape 1.4.1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.4.1.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.4.1
Multipliez par .
Étape 1.4.1.2.4.2
Soustrayez de .
Étape 1.4.1.2.4.3
Additionnez et .
Étape 1.4.1.2.4.4
Placez le signe moins devant la fraction.
Étape 1.4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Remplacez par .
Étape 1.4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.1.1
Élevez à la puissance .
Étape 1.4.2.2.1.2
Multipliez par .
Étape 1.4.2.2.1.3
Placez le signe moins devant la fraction.
Étape 1.4.2.2.1.4
Multipliez par .
Étape 1.4.2.2.2
Déterminez le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.2.1
Écrivez comme une fraction avec le dénominateur .
Étape 1.4.2.2.2.2
Multipliez par .
Étape 1.4.2.2.2.3
Multipliez par .
Étape 1.4.2.2.2.4
Écrivez comme une fraction avec le dénominateur .
Étape 1.4.2.2.2.5
Multipliez par .
Étape 1.4.2.2.2.6
Multipliez par .
Étape 1.4.2.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.4.2.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.2.4.1
Multipliez par .
Étape 1.4.2.2.4.2
Additionnez et .
Étape 1.4.2.2.4.3
Additionnez et .
Étape 1.4.3
Indiquez tous les points.
Étape 2
Évaluez sur les points finaux inclus.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Remplacez par .
Étape 2.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.1.1
Réécrivez comme .
Étape 2.1.2.1.1.2
Appliquez la règle de produit à .
Étape 2.1.2.1.1.3
Élevez à la puissance .
Étape 2.1.2.1.1.4
Factorisez à partir de .
Étape 2.1.2.1.1.5
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.1.5.1
Factorisez à partir de .
Étape 2.1.2.1.1.5.2
Annulez le facteur commun.
Étape 2.1.2.1.1.5.3
Réécrivez l’expression.
Étape 2.1.2.1.1.5.4
Divisez par .
Étape 2.1.2.1.2
Élevez à la puissance .
Étape 2.1.2.1.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.3.1
Multipliez par .
Étape 2.1.2.1.3.2
Multipliez par .
Étape 2.1.2.1.4
Multipliez par .
Étape 2.1.2.2
Simplifiez en ajoutant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.2.1
Additionnez et .
Étape 2.1.2.2.2
Additionnez et .
Étape 2.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Remplacez par .
Étape 2.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.2.2.1.2
Multipliez par .
Étape 2.2.2.1.3
Multipliez par .
Étape 2.2.2.2
Déterminez le dénominateur commun.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.1
Écrivez comme une fraction avec le dénominateur .
Étape 2.2.2.2.2
Multipliez par .
Étape 2.2.2.2.3
Multipliez par .
Étape 2.2.2.2.4
Écrivez comme une fraction avec le dénominateur .
Étape 2.2.2.2.5
Multipliez par .
Étape 2.2.2.2.6
Multipliez par .
Étape 2.2.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.4.1
Multipliez par .
Étape 2.2.2.4.2
Soustrayez de .
Étape 2.2.2.4.3
Additionnez et .
Étape 2.2.2.4.4
Placez le signe moins devant la fraction.
Étape 2.3
Indiquez tous les points.
Étape 3
Comparez les valeurs trouvées pour chaque valeur de afin de déterminer le maximum et le minimum absolus sur l’intervalle donné. Le maximum intervient sur la valeur la plus haute et le minimum intervient sur la valeur la plus basse.
Maximum absolu :
Minimum absolu :
Étape 4