Calcul infinitésimal Exemples

Trouver la primitive (2+e^(3x))^2
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Appliquez la propriété distributive.
Étape 4.2.2
Appliquez la propriété distributive.
Étape 4.2.3
Appliquez la propriété distributive.
Étape 4.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Multipliez par .
Étape 4.3.1.2
Déplacez à gauche de .
Étape 4.3.1.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.3.1
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.1.3.2
Additionnez et .
Étape 4.3.2
Additionnez et .
Étape 5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 6
Appliquez la règle de la constante.
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Différenciez .
Étape 8.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 8.1.4
Multipliez par .
Étape 8.2
Réécrivez le problème en utilisant et .
Étape 9
Associez et .
Étape 10
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 11
Associez et .
Étape 12
L’intégrale de par rapport à est .
Étape 13
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 13.1.1
Différenciez .
Étape 13.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 13.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 13.1.4
Multipliez par .
Étape 13.2
Réécrivez le problème en utilisant et .
Étape 14
Associez et .
Étape 15
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 16
L’intégrale de par rapport à est .
Étape 17
Simplifiez
Étape 18
Remplacez à nouveau pour chaque variable de substitution de l’intégration.
Appuyez ici pour voir plus d’étapes...
Étape 18.1
Remplacez toutes les occurrences de par .
Étape 18.2
Remplacez toutes les occurrences de par .
Étape 19
La réponse est la dérivée première de la fonction .