Calcul infinitésimal Exemples

Trouver les points d''inflexion h(x)=x^5+5x^4
Étape 1
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.1.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Multipliez par .
Étape 1.2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.2.3
Multipliez par .
Étape 1.2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3.3
Multipliez par .
Étape 1.3
La dérivée seconde de par rapport à est .
Étape 2
Définissez la dérivée seconde égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée seconde égale à .
Étape 2.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.2
Factorisez à partir de .
Étape 2.2.3
Factorisez à partir de .
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.4.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
Réécrivez comme .
Étape 2.4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.4.2.2.3
Plus ou moins est .
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Déterminez les points où se trouve la dérivée seconde .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1.1
L’élévation de à toute puissance positive produit .
Étape 3.1.2.1.2
L’élévation de à toute puissance positive produit .
Étape 3.1.2.1.3
Multipliez par .
Étape 3.1.2.2
Additionnez et .
Étape 3.1.2.3
La réponse finale est .
Étape 3.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.3
Remplacez dans pour déterminer la valeur de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Élevez à la puissance .
Étape 3.3.2.1.2
Élevez à la puissance .
Étape 3.3.2.1.3
Multipliez par .
Étape 3.3.2.2
Additionnez et .
Étape 3.3.2.3
La réponse finale est .
Étape 3.4
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 3.5
Déterminez les points qui pourraient être des points d’inflexion.
Étape 4
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 5
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez la variable par dans l’expression.
Étape 5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Élevez à la puissance .
Étape 5.2.1.2
Multipliez par .
Étape 5.2.1.3
Élevez à la puissance .
Étape 5.2.1.4
Multipliez par .
Étape 5.2.2
Additionnez et .
Étape 5.2.3
La réponse finale est .
Étape 5.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1.1
Appliquez la règle de produit à .
Étape 6.2.1.1.2
Appliquez la règle de produit à .
Étape 6.2.1.2
Élevez à la puissance .
Étape 6.2.1.3
Élevez à la puissance .
Étape 6.2.1.4
Élevez à la puissance .
Étape 6.2.1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.5.1
Placez le signe négatif initial dans dans le numérateur.
Étape 6.2.1.5.2
Factorisez à partir de .
Étape 6.2.1.5.3
Factorisez à partir de .
Étape 6.2.1.5.4
Annulez le facteur commun.
Étape 6.2.1.5.5
Réécrivez l’expression.
Étape 6.2.1.6
Associez et .
Étape 6.2.1.7
Multipliez par .
Étape 6.2.1.8
Placez le signe moins devant la fraction.
Étape 6.2.1.9
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.9.1
Appliquez la règle de produit à .
Étape 6.2.1.9.2
Appliquez la règle de produit à .
Étape 6.2.1.10
Élevez à la puissance .
Étape 6.2.1.11
Multipliez par .
Étape 6.2.1.12
Élevez à la puissance .
Étape 6.2.1.13
Élevez à la puissance .
Étape 6.2.1.14
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.14.1
Factorisez à partir de .
Étape 6.2.1.14.2
Annulez le facteur commun.
Étape 6.2.1.14.3
Réécrivez l’expression.
Étape 6.2.1.15
Multipliez par .
Étape 6.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.2.3
Associez et .
Étape 6.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 6.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.5.1
Multipliez par .
Étape 6.2.5.2
Additionnez et .
Étape 6.2.6
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée seconde afin de déterminer si elle est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Élevez à la puissance .
Étape 7.2.1.2
Multipliez par .
Étape 7.2.1.3
Élevez à la puissance .
Étape 7.2.1.4
Multipliez par .
Étape 7.2.2
Additionnez et .
Étape 7.2.3
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, le point d’inflexion est .
Étape 9