Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Convertissez de à .
Étape 4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Étape 6.1
Laissez . Déterminez .
Étape 6.1.1
Différenciez .
Étape 6.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 6.1.3
Évaluez .
Étape 6.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 6.1.3.3
Multipliez par .
Étape 6.1.4
Différenciez en utilisant la règle de la constante.
Étape 6.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.1.4.2
Additionnez et .
Étape 6.2
Réécrivez le problème en utilisant et .
Étape 7
Étape 7.1
Multipliez par .
Étape 7.2
Déplacez à gauche de .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Étape 9.1
Simplifiez
Étape 9.1.1
Multipliez par .
Étape 9.1.2
Multipliez par .
Étape 9.2
Appliquez les règles de base des exposants.
Étape 9.2.1
Utilisez pour réécrire comme .
Étape 9.2.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 9.2.3
Multipliez les exposants dans .
Étape 9.2.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 9.2.3.2
Associez et .
Étape 9.2.3.3
Placez le signe moins devant la fraction.
Étape 10
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 11
Étape 11.1
Laissez . Déterminez .
Étape 11.1.1
Différenciez .
Étape 11.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.1.4
Multipliez par .
Étape 11.2
Réécrivez le problème en utilisant et .
Étape 12
Associez et .
Étape 13
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 14
Comme la dérivée de est , l’intégrale de est .
Étape 15
Étape 15.1
Simplifiez
Étape 15.2
Associez et .
Étape 16
Étape 16.1
Remplacez toutes les occurrences de par .
Étape 16.2
Remplacez toutes les occurrences de par .
Étape 17
Remettez les termes dans l’ordre.
Étape 18
La réponse est la dérivée première de la fonction .