Calcul infinitésimal Exemples

Encontre a Derivada de Fourth y=sin(4x-7)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.4
Multipliez par .
Étape 1.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.1
Additionnez et .
Étape 1.2.6.2
Déplacez à gauche de .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Multipliez par .
Étape 2.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5
Multipliez par .
Étape 2.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.7
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.1
Additionnez et .
Étape 2.3.7.2
Multipliez par .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.4
Multipliez par .
Étape 3.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.6.1
Additionnez et .
Étape 3.3.6.2
Multipliez par .
Étape 4
Déterminez la dérivée quatrième.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2.2
La dérivée de par rapport à est .
Étape 4.2.3
Remplacez toutes les occurrences de par .
Étape 4.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Multipliez par .
Étape 4.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.5
Multipliez par .
Étape 4.3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.7
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.7.1
Additionnez et .
Étape 4.3.7.2
Multipliez par .