Calcul infinitésimal Exemples

Encontre a Derivada - d/dx y=4/((x^3+9)^5)
Étape 1
Différenciez en utilisant la règle multiple constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez comme .
Étape 1.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.2.2
Multipliez par .
Étape 2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez par .
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Additionnez et .
Étape 3.5.2
Multipliez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Associez et .
Étape 4.2.2
Placez le signe moins devant la fraction.
Étape 4.2.3
Associez et .
Étape 4.2.4
Déplacez à gauche de .