Calcul infinitésimal Exemples

Trouver la valeur maximale/minimale x^4(x-2)(x+3)
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Additionnez et .
Étape 1.2.4.2
Multipliez par .
Étape 1.3
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.4
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.4.1
Additionnez et .
Étape 1.4.4.2
Multipliez par .
Étape 1.4.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4.6
Déplacez à gauche de .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Appliquez la propriété distributive.
Étape 1.5.2
Appliquez la propriété distributive.
Étape 1.5.3
Appliquez la propriété distributive.
Étape 1.5.4
Appliquez la propriété distributive.
Étape 1.5.5
Appliquez la propriété distributive.
Étape 1.5.6
Appliquez la propriété distributive.
Étape 1.5.7
Appliquez la propriété distributive.
Étape 1.5.8
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.1.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.1.1.1
Élevez à la puissance .
Étape 1.5.8.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.8.1.2
Additionnez et .
Étape 1.5.8.2
Déplacez à gauche de .
Étape 1.5.8.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.3.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.3.1.1
Élevez à la puissance .
Étape 1.5.8.3.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.8.3.2
Additionnez et .
Étape 1.5.8.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.4.1
Déplacez .
Étape 1.5.8.4.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.4.2.1
Élevez à la puissance .
Étape 1.5.8.4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.8.4.3
Additionnez et .
Étape 1.5.8.5
Élevez à la puissance .
Étape 1.5.8.6
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.8.7
Additionnez et .
Étape 1.5.8.8
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.8.1
Déplacez .
Étape 1.5.8.8.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.8.8.2.1
Élevez à la puissance .
Étape 1.5.8.8.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.8.8.3
Additionnez et .
Étape 1.5.8.9
Multipliez par .
Étape 1.5.8.10
Multipliez par .
Étape 1.5.8.11
Élevez à la puissance .
Étape 1.5.8.12
Utilisez la règle de puissance pour associer des exposants.
Étape 1.5.8.13
Additionnez et .
Étape 1.5.8.14
Multipliez par .
Étape 1.5.8.15
Multipliez par .
Étape 1.5.8.16
Soustrayez de .
Étape 1.5.8.17
Additionnez et .
Étape 1.5.8.18
Additionnez et .
Étape 1.5.8.19
Additionnez et .
Étape 1.5.8.20
Additionnez et .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 2.4
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4.3
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 4.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.4.1
Additionnez et .
Étape 4.1.2.4.2
Multipliez par .
Étape 4.1.3
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 4.1.4
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.4.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.4.4.1
Additionnez et .
Étape 4.1.4.4.2
Multipliez par .
Étape 4.1.4.5
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.4.6
Déplacez à gauche de .
Étape 4.1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.1
Appliquez la propriété distributive.
Étape 4.1.5.2
Appliquez la propriété distributive.
Étape 4.1.5.3
Appliquez la propriété distributive.
Étape 4.1.5.4
Appliquez la propriété distributive.
Étape 4.1.5.5
Appliquez la propriété distributive.
Étape 4.1.5.6
Appliquez la propriété distributive.
Étape 4.1.5.7
Appliquez la propriété distributive.
Étape 4.1.5.8
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.8.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.8.1.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.8.1.1.1
Élevez à la puissance .
Étape 4.1.5.8.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.5.8.1.2
Additionnez et .
Étape 4.1.5.8.2
Déplacez à gauche de .
Étape 4.1.5.8.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.8.3.1
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.5.8.3.2
Additionnez et .
Étape 4.1.5.8.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.8.4.1
Déplacez .
Étape 4.1.5.8.4.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.8.4.2.1
Élevez à la puissance .
Étape 4.1.5.8.4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.5.8.4.3
Additionnez et .
Étape 4.1.5.8.5
Élevez à la puissance .
Étape 4.1.5.8.6
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.5.8.7
Additionnez et .
Étape 4.1.5.8.8
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.8.8.1
Déplacez .
Étape 4.1.5.8.8.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.5.8.8.2.1
Élevez à la puissance .
Étape 4.1.5.8.8.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.5.8.8.3
Additionnez et .
Étape 4.1.5.8.9
Multipliez par .
Étape 4.1.5.8.10
Multipliez par .
Étape 4.1.5.8.11
Élevez à la puissance .
Étape 4.1.5.8.12
Utilisez la règle de puissance pour associer des exposants.
Étape 4.1.5.8.13
Additionnez et .
Étape 4.1.5.8.14
Multipliez par .
Étape 4.1.5.8.15
Multipliez par .
Étape 4.1.5.8.16
Soustrayez de .
Étape 4.1.5.8.17
Additionnez et .
Étape 4.1.5.8.18
Additionnez et .
Étape 4.1.5.8.19
Additionnez et .
Étape 4.1.5.8.20
Additionnez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Factorisez à partir de .
Étape 5.2.2
Factorisez à partir de .
Étape 5.2.3
Factorisez à partir de .
Étape 5.2.4
Factorisez à partir de .
Étape 5.2.5
Factorisez à partir de .
Étape 5.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Définissez égal à .
Étape 5.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 5.4.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.4.2.2.1
Réécrivez comme .
Étape 5.4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Définissez égal à .
Étape 5.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 5.5.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 5.5.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.3.1.1
Élevez à la puissance .
Étape 5.5.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.3.1.2.1
Multipliez par .
Étape 5.5.2.3.1.2.2
Multipliez par .
Étape 5.5.2.3.1.3
Additionnez et .
Étape 5.5.2.3.2
Multipliez par .
Étape 5.5.2.4
La réponse finale est la combinaison des deux solutions.
Étape 5.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
L’élévation de à toute puissance positive produit .
Étape 9.1.2
Multipliez par .
Étape 9.1.3
L’élévation de à toute puissance positive produit .
Étape 9.1.4
Multipliez par .
Étape 9.1.5
L’élévation de à toute puissance positive produit .
Étape 9.1.6
Multipliez par .
Étape 9.2
Simplifiez en ajoutant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Additionnez et .
Étape 9.2.2
Additionnez et .
Étape 10
Comme il y a au moins un point avec ou une dérivée seconde indéfinie, appliquez le test de la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 10.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
Remplacez la variable par dans l’expression.
Étape 10.2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.1.1
Élevez à la puissance .
Étape 10.2.2.1.2
Multipliez par .
Étape 10.2.2.1.3
Élevez à la puissance .
Étape 10.2.2.1.4
Multipliez par .
Étape 10.2.2.1.5
Élevez à la puissance .
Étape 10.2.2.1.6
Multipliez par .
Étape 10.2.2.2
Simplifiez en ajoutant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.2.2.1
Additionnez et .
Étape 10.2.2.2.2
Additionnez et .
Étape 10.2.2.3
La réponse finale est .
Étape 10.3
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.1
Remplacez la variable par dans l’expression.
Étape 10.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.2.1.1
Élevez à la puissance .
Étape 10.3.2.1.2
Multipliez par .
Étape 10.3.2.1.3
Élevez à la puissance .
Étape 10.3.2.1.4
Multipliez par .
Étape 10.3.2.1.5
Élevez à la puissance .
Étape 10.3.2.1.6
Multipliez par .
Étape 10.3.2.2
Simplifiez en ajoutant des nombres.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.2.2.1
Additionnez et .
Étape 10.3.2.2.2
Additionnez et .
Étape 10.3.2.3
La réponse finale est .
Étape 10.4
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 10.4.1
Remplacez la variable par dans l’expression.
Étape 10.4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 10.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.4.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 10.4.2.1.2
Multipliez par .
Étape 10.4.2.1.3
Un à n’importe quelle puissance est égal à un.
Étape 10.4.2.1.4
Multipliez par .
Étape 10.4.2.1.5
Un à n’importe quelle puissance est égal à un.
Étape 10.4.2.1.6
Multipliez par .
Étape 10.4.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 10.4.2.2.1
Additionnez et .
Étape 10.4.2.2.2
Soustrayez de .
Étape 10.4.2.3
La réponse finale est .
Étape 10.5
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Appuyez ici pour voir plus d’étapes...
Étape 10.5.1
Remplacez la variable par dans l’expression.
Étape 10.5.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 10.5.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.5.2.1.1
Élevez à la puissance .
Étape 10.5.2.1.2
Multipliez par .
Étape 10.5.2.1.3
Élevez à la puissance .
Étape 10.5.2.1.4
Multipliez par .
Étape 10.5.2.1.5
Élevez à la puissance .
Étape 10.5.2.1.6
Multipliez par .
Étape 10.5.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 10.5.2.2.1
Additionnez et .
Étape 10.5.2.2.2
Soustrayez de .
Étape 10.5.2.3
La réponse finale est .
Étape 10.6
Comme la dérivée première a changé de signe de négative à positive autour de , est un minimum local.
est un minimum local
Étape 10.7
Comme la dérivée première a changé de signe de positive à négative autour de , est un maximum local.
est un maximum local
Étape 10.8
Comme la dérivée première a changé de signe de négative à positive autour de , est un minimum local.
est un minimum local
Étape 10.9
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
est un minimum local
est un minimum local
est un maximum local
est un minimum local
Étape 11