Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de 0 de (3x+2x^-1)/(x+4x^-1)
Étape 1
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Simplifiez l’argument limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Convertissez les exposants négatifs en fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.1.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.2
Combinez les facteurs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Associez et .
Étape 1.1.2.2
Associez et .
Étape 1.1.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.1.3.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.1.3.4
Associez les numérateurs sur le dénominateur commun.
Étape 1.2
Simplifiez l’argument limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.2.2
Combinez les facteurs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Élevez à la puissance .
Étape 1.2.2.2
Élevez à la puissance .
Étape 1.2.2.3
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.2.4
Additionnez et .
Étape 1.2.2.5
Élevez à la puissance .
Étape 1.2.2.6
Élevez à la puissance .
Étape 1.2.2.7
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.2.8
Additionnez et .
Étape 1.2.2.9
Multipliez par .
Étape 1.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Annulez le facteur commun.
Étape 1.2.3.2
Réécrivez l’expression.
Étape 2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 5
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 6
Évaluez la limite de qui est constante lorsque approche de .
Étape 7
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 8
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 9
Évaluez la limite de qui est constante lorsque approche de .
Étape 10
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Évaluez la limite de en insérant pour .
Étape 10.2
Évaluez la limite de en insérant pour .
Étape 11
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
L’élévation de à toute puissance positive produit .
Étape 11.1.2
Multipliez par .
Étape 11.1.3
Additionnez et .
Étape 11.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
L’élévation de à toute puissance positive produit .
Étape 11.2.2
Additionnez et .
Étape 11.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Factorisez à partir de .
Étape 11.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 11.3.2.1
Factorisez à partir de .
Étape 11.3.2.2
Annulez le facteur commun.
Étape 11.3.2.3
Réécrivez l’expression.
Étape 12
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :