Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=2 racine carrée de y+1cos(x)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.2.2
Multipliez par .
Étape 1.2.3
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Multipliez par .
Étape 1.2.3.2
Élevez à la puissance .
Étape 1.2.3.3
Élevez à la puissance .
Étape 1.2.3.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.3.5
Additionnez et .
Étape 1.2.3.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.6.1
Utilisez pour réécrire comme .
Étape 1.2.3.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.3.6.3
Associez et .
Étape 1.2.3.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.6.4.1
Annulez le facteur commun.
Étape 1.2.3.6.4.2
Réécrivez l’expression.
Étape 1.2.3.6.5
Simplifiez
Étape 1.2.4
Associez et .
Étape 1.2.5
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.5.1
Associez et .
Étape 1.2.5.2
Élevez à la puissance .
Étape 1.2.5.3
Élevez à la puissance .
Étape 1.2.5.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.5.5
Additionnez et .
Étape 1.2.5.6
Associez et .
Étape 1.2.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.1
Utilisez pour réécrire comme .
Étape 1.2.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.6.3
Associez et .
Étape 1.2.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.6.4.1
Annulez le facteur commun.
Étape 1.2.6.4.2
Réécrivez l’expression.
Étape 1.2.6.5
Simplifiez
Étape 1.2.7
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.7.1
Annulez le facteur commun.
Étape 1.2.7.2
Divisez par .
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.5
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Utilisez pour réécrire comme .
Étape 2.2.2.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.2.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.3.2
Associez et .
Étape 2.2.2.3.3
Placez le signe moins devant la fraction.
Étape 2.2.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.4
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
L’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Annulez le facteur commun.
Étape 3.1.2.2
Divisez par .
Étape 3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1.1
Annulez le facteur commun.
Étape 3.1.3.1.2
Divisez par .
Étape 3.2
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 3.3
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.1.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1.2.1
Annulez le facteur commun.
Étape 3.3.1.1.1.2.2
Réécrivez l’expression.
Étape 3.3.1.1.2
Simplifiez
Étape 3.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Réécrivez comme .
Étape 3.3.2.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.2.1
Appliquez la propriété distributive.
Étape 3.3.2.1.2.2
Appliquez la propriété distributive.
Étape 3.3.2.1.2.3
Appliquez la propriété distributive.
Étape 3.3.2.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1.1.1
Élevez à la puissance .
Étape 3.3.2.1.3.1.1.2
Élevez à la puissance .
Étape 3.3.2.1.3.1.1.3
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.2.1.3.1.1.4
Additionnez et .
Étape 3.3.2.1.3.1.2
Associez et .
Étape 3.3.2.1.3.1.3
Associez et .
Étape 3.3.2.1.3.1.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.1.4.1
Multipliez par .
Étape 3.3.2.1.3.1.4.2
Élevez à la puissance .
Étape 3.3.2.1.3.1.4.3
Élevez à la puissance .
Étape 3.3.2.1.3.1.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.2.1.3.1.4.5
Additionnez et .
Étape 3.3.2.1.3.1.4.6
Multipliez par .
Étape 3.3.2.1.3.2
Additionnez et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.3.2.1
Remettez dans l’ordre et .
Étape 3.3.2.1.3.2.2
Additionnez et .
Étape 3.3.2.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.4.1
Annulez le facteur commun.
Étape 3.3.2.1.4.2
Réécrivez l’expression.
Étape 3.4
Soustrayez des deux côtés de l’équation.
Étape 4
Simplifiez la constante d’intégration.