Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 10
Étape 10.1
Simplifiez
Étape 10.2
Simplifiez
Étape 10.2.1
Associez et .
Étape 10.2.2
Associez et .
Étape 10.2.3
Annulez le facteur commun de .
Étape 10.2.3.1
Annulez le facteur commun.
Étape 10.2.3.2
Divisez par .
Étape 11
Remettez les termes dans l’ordre.
Étape 12
La réponse est la dérivée première de la fonction .