Calcul infinitésimal Exemples

Trouver la primitive f(x)=1/x-3/(x^3)
Étape 1
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 2
Définissez l’intégrale à résoudre.
Étape 3
Séparez l’intégrale unique en plusieurs intégrales.
Étape 4
L’intégrale de par rapport à est .
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez par .
Étape 7.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 7.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 7.3.2
Multipliez par .
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Associez et .
Étape 9.1.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 9.2
Simplifiez
Étape 10
La réponse est la dérivée première de la fonction .