Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Divisez le numérateur et le dénominateur par la plus forte puissance de dans le dénominateur, qui est .
Étape 2
Étape 2.1
Annulez le facteur commun de .
Étape 2.2
Simplifiez chaque terme.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Divisez par .
Étape 2.2.2
Placez le signe moins devant la fraction.
Étape 2.3
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.4
Placez le terme hors de la limite car il est constant par rapport à .
Étape 2.5
Placez la limite sous le radical.
Étape 2.6
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.7
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.8
Placez le terme hors de la limite car il est constant par rapport à .
Étape 3
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 4
Étape 4.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 4.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 4.3
Placez le terme hors de la limite car il est constant par rapport à .
Étape 5
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 6
Étape 6.1
Simplifiez le numérateur.
Étape 6.1.1
Multipliez par .
Étape 6.1.2
Additionnez et .
Étape 6.1.3
Réécrivez comme .
Étape 6.1.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.2
Simplifiez le dénominateur.
Étape 6.2.1
Multipliez par .
Étape 6.2.2
Additionnez et .
Étape 6.3
Multipliez par .
Étape 6.4
Divisez par .