Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Regroupez des facteurs.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Étape 1.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.3.2
Associez et .
Étape 1.3.3
Associez et .
Étape 1.3.4
Associez.
Étape 1.3.5
Annulez le facteur commun de .
Étape 1.3.5.1
Annulez le facteur commun.
Étape 1.3.5.2
Réécrivez l’expression.
Étape 1.3.6
Annulez le facteur commun de .
Étape 1.3.6.1
Annulez le facteur commun.
Étape 1.3.6.2
Divisez par .
Étape 1.4
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.2.1.1
Laissez . Déterminez .
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
La dérivée de par rapport à est .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Associez et .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Associez et .
Étape 3.2.2.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.3
Multipliez .
Étape 3.2.2.1.3.1
Associez et .
Étape 3.2.2.1.3.2
Multipliez par .
Étape 3.3
Résolvez .
Étape 3.3.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.3.2
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.3.3
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.3.4
Résolvez .
Étape 3.3.4.1
Réécrivez l’équation comme .
Étape 3.3.4.2
Simplifiez .
Étape 3.3.4.2.1
Factorisez à partir de .
Étape 3.3.4.2.1.1
Factorisez à partir de .
Étape 3.3.4.2.1.2
Factorisez à partir de .
Étape 3.3.4.2.1.3
Factorisez à partir de .
Étape 3.3.4.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3.4.2.3
Simplifiez les termes.
Étape 3.3.4.2.3.1
Associez et .
Étape 3.3.4.2.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.4.2.4
Déplacez à gauche de .
Étape 3.3.4.2.5
Associez et .
Étape 3.3.4.2.6
Réécrivez comme .
Étape 4
Simplifiez la constante d’intégration.