Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(x^2y-y)/(y+1) , y(3)=1
,
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Factorisez à partir de .
Étape 1.1.1.2
Factorisez à partir de .
Étape 1.1.1.3
Factorisez à partir de .
Étape 1.1.2
Réécrivez comme .
Étape 1.1.3
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.1.3.2
Supprimez les parenthèses inutiles.
Étape 1.2
Regroupez des facteurs.
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Appliquez la propriété distributive.
Étape 1.4.1.2
Appliquez la propriété distributive.
Étape 1.4.1.3
Appliquez la propriété distributive.
Étape 1.4.2
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1.1
Multipliez par .
Étape 1.4.2.1.2
Déplacez à gauche de .
Étape 1.4.2.1.3
Réécrivez comme .
Étape 1.4.2.1.4
Multipliez par .
Étape 1.4.2.1.5
Multipliez par .
Étape 1.4.2.2
Additionnez et .
Étape 1.4.2.3
Additionnez et .
Étape 1.4.3
Multipliez par .
Étape 1.4.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.4.1
Annulez le facteur commun.
Étape 1.4.4.2
Réécrivez l’expression.
Étape 1.4.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.5.1
Factorisez à partir de .
Étape 1.4.5.2
Annulez le facteur commun.
Étape 1.4.5.3
Réécrivez l’expression.
Étape 1.5
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez la fraction en plusieurs fractions.
Étape 2.2.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Annulez le facteur commun.
Étape 2.2.3.2
Réécrivez l’expression.
Étape 2.2.4
Appliquez la règle de la constante.
Étape 2.2.5
L’intégrale de par rapport à est .
Étape 2.2.6
Simplifiez
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Appliquez la règle de la constante.
Étape 2.3.4
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Factorisez à partir de .
Étape 4.2.1.1.2
Annulez le facteur commun.
Étape 4.2.1.1.3
Réécrivez l’expression.
Étape 4.2.1.2
Élevez à la puissance .
Étape 4.2.1.3
Multipliez par .
Étape 4.2.2
Soustrayez de .
Étape 4.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 4.3.1.2
Le logarithme naturel de est .
Étape 4.3.2
Additionnez et .
Étape 4.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Soustrayez des deux côtés de l’équation.
Étape 4.4.2
Soustrayez de .
Étape 5
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez par .
Étape 5.2
Associez et .