Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Multipliez les deux côtés par .
Étape 3
Étape 3.1
Annulez le facteur commun à et .
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Annulez les facteurs communs.
Étape 3.1.2.1
Multipliez par .
Étape 3.1.2.2
Annulez le facteur commun.
Étape 3.1.2.3
Réécrivez l’expression.
Étape 3.1.2.4
Divisez par .
Étape 3.2
Multipliez par en additionnant les exposants.
Étape 3.2.1
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.2
Associez les termes opposés dans .
Étape 3.2.2.1
Soustrayez de .
Étape 3.2.2.2
Additionnez et .
Étape 3.2.3
Additionnez et .
Étape 3.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.4
Annulez le facteur commun à et .
Étape 3.4.1
Factorisez à partir de .
Étape 3.4.2
Annulez les facteurs communs.
Étape 3.4.2.1
Multipliez par .
Étape 3.4.2.2
Annulez le facteur commun.
Étape 3.4.2.3
Réécrivez l’expression.
Étape 3.4.2.4
Divisez par .
Étape 3.5
Multipliez par en additionnant les exposants.
Étape 3.5.1
Déplacez .
Étape 3.5.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.5.3
Associez les termes opposés dans .
Étape 3.5.3.1
Additionnez et .
Étape 3.5.3.2
Additionnez et .
Étape 3.5.4
Additionnez et .
Étape 4
Étape 4.1
Définissez une intégrale de chaque côté.
Étape 4.2
Intégrez le côté gauche.
Étape 4.2.1
Laissez . Alors , donc . Réécrivez avec et .
Étape 4.2.1.1
Laissez . Déterminez .
Étape 4.2.1.1.1
Différenciez .
Étape 4.2.1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.2.1.1.4
Multipliez par .
Étape 4.2.1.2
Réécrivez le problème en utilisant et .
Étape 4.2.2
Associez et .
Étape 4.2.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.2.4
L’intégrale de par rapport à est .
Étape 4.2.5
Simplifiez
Étape 4.2.6
Remplacez toutes les occurrences de par .
Étape 4.3
Intégrez le côté droit.
Étape 4.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.3.2
Laissez . Alors , donc . Réécrivez avec et .
Étape 4.3.2.1
Laissez . Déterminez .
Étape 4.3.2.1.1
Différenciez .
Étape 4.3.2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.3.2.1.4
Multipliez par .
Étape 4.3.2.2
Réécrivez le problème en utilisant et .
Étape 4.3.3
Associez et .
Étape 4.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.3.5
L’intégrale de par rapport à est .
Étape 4.3.6
Simplifiez
Étape 4.3.7
Remplacez toutes les occurrences de par .
Étape 4.4
Regroupez la constante d’intégration du côté droit comme .
Étape 5
Étape 5.1
Multipliez les deux côtés de l’équation par .
Étape 5.2
Simplifiez les deux côtés de l’équation.
Étape 5.2.1
Simplifiez le côté gauche.
Étape 5.2.1.1
Simplifiez .
Étape 5.2.1.1.1
Associez et .
Étape 5.2.1.1.2
Annulez le facteur commun de .
Étape 5.2.1.1.2.1
Annulez le facteur commun.
Étape 5.2.1.1.2.2
Réécrivez l’expression.
Étape 5.2.2
Simplifiez le côté droit.
Étape 5.2.2.1
Simplifiez .
Étape 5.2.2.1.1
Associez et .
Étape 5.2.2.1.2
Appliquez la propriété distributive.
Étape 5.2.2.1.3
Annulez le facteur commun de .
Étape 5.2.2.1.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 5.2.2.1.3.2
Annulez le facteur commun.
Étape 5.2.2.1.3.3
Réécrivez l’expression.
Étape 5.3
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 5.4
Développez le côté gauche.
Étape 5.4.1
Développez en déplaçant hors du logarithme.
Étape 5.4.2
Le logarithme naturel de est .
Étape 5.4.3
Multipliez par .
Étape 5.5
Divisez chaque terme dans par et simplifiez.
Étape 5.5.1
Divisez chaque terme dans par .
Étape 5.5.2
Simplifiez le côté gauche.
Étape 5.5.2.1
Annulez le facteur commun de .
Étape 5.5.2.1.1
Annulez le facteur commun.
Étape 5.5.2.1.2
Divisez par .
Étape 6
Simplifiez la constante d’intégration.