Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Simplifiez l’expression.
Étape 2.2.1.1
Inversez l’exposant de et placez-le hors du dénominateur.
Étape 2.2.1.2
Simplifiez
Étape 2.2.1.2.1
Multipliez les exposants dans .
Étape 2.2.1.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.1.2
Multipliez par .
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.2.2.1
Laissez . Déterminez .
Étape 2.2.2.1.1
Différenciez .
Étape 2.2.2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.1.4
Multipliez par .
Étape 2.2.2.2
Réécrivez le problème en utilisant et .
Étape 2.2.3
Simplifiez
Étape 2.2.3.1
Placez le signe moins devant la fraction.
Étape 2.2.3.2
Associez et .
Étape 2.2.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.6
L’intégrale de par rapport à est .
Étape 2.2.7
Simplifiez
Étape 2.2.8
Remplacez toutes les occurrences de par .
Étape 2.3
Appliquez la règle de la constante.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.1.2.2
Factorisez à partir de .
Étape 3.2.1.1.2.3
Annulez le facteur commun.
Étape 3.2.1.1.2.4
Réécrivez l’expression.
Étape 3.2.1.1.3
Multipliez.
Étape 3.2.1.1.3.1
Multipliez par .
Étape 3.2.1.1.3.2
Multipliez par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Appliquez la propriété distributive.
Étape 3.3
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 3.4
Développez le côté gauche.
Étape 3.4.1
Développez en déplaçant hors du logarithme.
Étape 3.4.2
Le logarithme naturel de est .
Étape 3.4.3
Multipliez par .
Étape 3.5
Divisez chaque terme dans par et simplifiez.
Étape 3.5.1
Divisez chaque terme dans par .
Étape 3.5.2
Simplifiez le côté gauche.
Étape 3.5.2.1
Annulez le facteur commun de .
Étape 3.5.2.1.1
Annulez le facteur commun.
Étape 3.5.2.1.2
Divisez par .
Étape 3.5.3
Simplifiez le côté droit.
Étape 3.5.3.1
Placez le signe moins devant la fraction.
Étape 4
Simplifiez la constante d’intégration.