Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)-2x^2y^2=0
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.3.2
Associez et .
Étape 1.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Factorisez à partir de .
Étape 1.3.3.2
Annulez le facteur commun.
Étape 1.3.3.3
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Réécrivez comme .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Associez et .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Associez et .
Étape 3.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 3.2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 3.2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 3.2.5
n’a pas de facteur hormis et .
est un nombre premier
Étape 3.2.6
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 3.2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 3.2.8
Le facteur pour est lui-même.
se produit fois.
Étape 3.2.9
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3.2.10
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 3.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.2.1.2
Factorisez à partir de .
Étape 3.3.2.1.3
Annulez le facteur commun.
Étape 3.3.2.1.4
Réécrivez l’expression.
Étape 3.3.2.2
Multipliez par .
Étape 3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.3.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.2.1
Annulez le facteur commun.
Étape 3.3.3.1.2.2
Réécrivez l’expression.
Étape 3.3.3.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez l’équation comme .
Étape 3.4.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Factorisez à partir de .
Étape 3.4.2.2
Factorisez à partir de .
Étape 3.4.2.3
Factorisez à partir de .
Étape 3.4.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.1
Divisez chaque terme dans par .
Étape 3.4.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.2.1.1
Annulez le facteur commun.
Étape 3.4.3.2.1.2
Divisez par .
Étape 3.4.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.3.1
Placez le signe moins devant la fraction.
Étape 4
Simplifiez la constante d’intégration.