Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Regroupez des facteurs.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Annulez le facteur commun de .
Étape 1.3.2.1
Factorisez à partir de .
Étape 1.3.2.2
Annulez le facteur commun.
Étape 1.3.2.3
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Divisez la fraction en plusieurs fractions.
Étape 2.3.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.3
Annulez le facteur commun de .
Étape 2.3.3.1
Annulez le facteur commun.
Étape 2.3.3.2
Divisez par .
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
L’intégrale de par rapport à est .
Étape 2.3.6
Appliquez la règle de la constante.
Étape 2.3.7
Simplifiez
Étape 2.3.8
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.2
Simplifiez
Étape 3.2.2.1.2.1
Multipliez par .
Étape 3.2.2.1.2.2
Multipliez par .
Étape 3.3
Simplifiez en déplaçant dans le logarithme.
Étape 3.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4
Simplifiez la constante d’intégration.