Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(9+20x)/(xy^2)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Regroupez des facteurs.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Factorisez à partir de .
Étape 1.3.2.2
Annulez le facteur commun.
Étape 1.3.2.3
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez la fraction en plusieurs fractions.
Étape 2.3.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Annulez le facteur commun.
Étape 2.3.3.2
Divisez par .
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
L’intégrale de par rapport à est .
Étape 2.3.6
Appliquez la règle de la constante.
Étape 2.3.7
Simplifiez
Étape 2.3.8
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.2.1
Multipliez par .
Étape 3.2.2.1.2.2
Multipliez par .
Étape 3.3
Simplifiez en déplaçant dans le logarithme.
Étape 3.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4
Simplifiez la constante d’intégration.