Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=x^10y^10
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Annulez le facteur commun.
Étape 1.2.3
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Réécrivez comme .
Étape 2.2.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.2.1
Multipliez par .
Étape 2.2.3.2.2
Déplacez à gauche de .
Étape 2.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Associez et .
Étape 3.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 3.2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 3.2.4
a des facteurs de et .
Étape 3.2.5
n’a pas de facteur hormis et .
est un nombre premier
Étape 3.2.6
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 3.2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 3.2.8
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.8.1
Multipliez par .
Étape 3.2.8.2
Multipliez par .
Étape 3.2.9
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 3.2.10
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3.2.11
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.1
Multipliez par .
Étape 3.2.11.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.2.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.2.1.1
Élevez à la puissance .
Étape 3.2.11.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.11.2.2
Additionnez et .
Étape 3.2.11.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.3.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.3.1.1
Élevez à la puissance .
Étape 3.2.11.3.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.11.3.2
Additionnez et .
Étape 3.2.11.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.4.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.4.1.1
Élevez à la puissance .
Étape 3.2.11.4.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.11.4.2
Additionnez et .
Étape 3.2.11.5
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.5.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.5.1.1
Élevez à la puissance .
Étape 3.2.11.5.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.11.5.2
Additionnez et .
Étape 3.2.11.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.6.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.6.1.1
Élevez à la puissance .
Étape 3.2.11.6.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.11.6.2
Additionnez et .
Étape 3.2.11.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.7.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.7.1.1
Élevez à la puissance .
Étape 3.2.11.7.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.11.7.2
Additionnez et .
Étape 3.2.11.8
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.8.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.11.8.1.1
Élevez à la puissance .
Étape 3.2.11.8.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.11.8.2
Additionnez et .
Étape 3.2.12
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 3.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.2.1.2
Factorisez à partir de .
Étape 3.3.2.1.3
Annulez le facteur commun.
Étape 3.3.2.1.4
Réécrivez l’expression.
Étape 3.3.2.2
Multipliez par .
Étape 3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.3.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1.2.1
Factorisez à partir de .
Étape 3.3.3.1.2.2
Annulez le facteur commun.
Étape 3.3.3.1.2.3
Réécrivez l’expression.
Étape 3.3.3.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez l’équation comme .
Étape 3.4.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Factorisez à partir de .
Étape 3.4.2.2
Factorisez à partir de .
Étape 3.4.2.3
Factorisez à partir de .
Étape 3.4.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.1
Divisez chaque terme dans par .
Étape 3.4.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.2.1.1
Annulez le facteur commun.
Étape 3.4.3.2.1.2
Réécrivez l’expression.
Étape 3.4.3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.2.2.1
Annulez le facteur commun.
Étape 3.4.3.2.2.2
Divisez par .
Étape 3.4.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.3.1
Placez le signe moins devant la fraction.
Étape 3.4.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4.5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.1
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.1.1
Réécrivez comme .
Étape 3.4.5.1.2
Réécrivez comme .
Étape 3.4.5.2
Extrayez les termes de sous le radical.
Étape 3.4.5.3
Élevez à la puissance .
Étape 3.4.5.4
Réécrivez comme .
Étape 3.4.5.5
Multipliez par .
Étape 3.4.5.6
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.6.1
Multipliez par .
Étape 3.4.5.6.2
Élevez à la puissance .
Étape 3.4.5.6.3
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.5.6.4
Additionnez et .
Étape 3.4.5.6.5
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.6.5.1
Utilisez pour réécrire comme .
Étape 3.4.5.6.5.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.5.6.5.3
Associez et .
Étape 3.4.5.6.5.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.6.5.4.1
Annulez le facteur commun.
Étape 3.4.5.6.5.4.2
Réécrivez l’expression.
Étape 3.4.5.6.5.5
Simplifiez
Étape 3.4.5.7
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.7.1
Réécrivez comme .
Étape 3.4.5.7.2
Appliquez la règle de produit à .
Étape 3.4.5.7.3
Élevez à la puissance .
Étape 3.4.5.7.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.7.4.1
Factorisez à partir de .
Étape 3.4.5.7.4.2
Réécrivez comme .
Étape 3.4.5.7.4.3
Ajoutez des parenthèses.
Étape 3.4.5.7.5
Extrayez les termes de sous le radical.
Étape 3.4.5.7.6
Associez les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.7.6.1
Associez en utilisant la règle de produit pour les radicaux.
Étape 3.4.5.7.6.2
Multipliez par .
Étape 3.4.5.8
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.5.8.1
Factorisez à partir de .
Étape 3.4.5.8.2
Annulez le facteur commun.
Étape 3.4.5.8.3
Réécrivez l’expression.
Étape 4
Simplifiez la constante d’intégration.