Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(y^2+1)/(xy+y)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Élevez à la puissance .
Étape 1.1.3
Factorisez à partir de .
Étape 1.1.4
Factorisez à partir de .
Étape 1.2
Regroupez des facteurs.
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Multipliez par .
Étape 1.4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Annulez le facteur commun.
Étape 1.4.2.2
Réécrivez l’expression.
Étape 1.4.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.1
Annulez le facteur commun.
Étape 1.4.3.2
Réécrivez l’expression.
Étape 1.5
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.5
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Multipliez par .
Étape 2.2.2.2
Déplacez à gauche de .
Étape 2.2.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.4
L’intégrale de par rapport à est .
Étape 2.2.5
Simplifiez
Étape 2.2.6
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1.1
Différenciez .
Étape 2.3.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.1.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.1.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.1.1.5
Additionnez et .
Étape 2.3.1.2
Réécrivez le problème en utilisant et .
Étape 2.3.2
L’intégrale de par rapport à est .
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Appliquez la propriété distributive.
Étape 3.3
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 3.4
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1.1
Simplifiez en déplaçant dans le logarithme.
Étape 3.4.1.1.2
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.
Étape 3.4.1.2
Utilisez la propriété du quotient des logarithmes, .
Étape 3.5
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.6
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Réécrivez l’équation comme .
Étape 3.7.2
Multipliez les deux côtés par .
Étape 3.7.3
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.3.1.1
Annulez le facteur commun.
Étape 3.7.3.1.2
Réécrivez l’expression.
Étape 3.7.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.4.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.4.1.1
Réécrivez comme .
Étape 3.7.4.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.4.1.2.1
Appliquez la propriété distributive.
Étape 3.7.4.1.2.2
Appliquez la propriété distributive.
Étape 3.7.4.1.2.3
Appliquez la propriété distributive.
Étape 3.7.4.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.4.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.4.1.3.1.1
Multipliez par .
Étape 3.7.4.1.3.1.2
Multipliez par .
Étape 3.7.4.1.3.1.3
Multipliez par .
Étape 3.7.4.1.3.1.4
Multipliez par .
Étape 3.7.4.1.3.2
Additionnez et .
Étape 3.7.4.1.4
Appliquez la propriété distributive.
Étape 3.7.4.1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.7.4.1.5.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.7.4.1.5.2
Multipliez par .
Étape 3.7.4.1.6
Remettez les facteurs dans l’ordre dans .
Étape 3.7.4.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 3.7.4.3
Soustrayez des deux côtés de l’équation.
Étape 3.7.4.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4
Simplifiez la constante d’intégration.