Calcul infinitésimal Exemples

Résoudre l''équation différentielle (y+1)e^xdx-(e^x+1)dy=0
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Multipliez les deux côtés par .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2
Annulez le facteur commun.
Étape 3.2.3
Réécrivez l’expression.
Étape 3.3
Placez le signe moins devant la fraction.
Étape 3.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.5.2
Factorisez à partir de .
Étape 3.5.3
Factorisez à partir de .
Étape 3.5.4
Annulez le facteur commun.
Étape 3.5.5
Réécrivez l’expression.
Étape 3.6
Associez et .
Étape 3.7
Placez le signe moins devant la fraction.
Étape 4
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez une intégrale de chaque côté.
Étape 4.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.2.2
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Différenciez .
Étape 4.2.2.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.2.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.2.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.2.1.5
Additionnez et .
Étape 4.2.2.2
Réécrivez le problème en utilisant et .
Étape 4.2.3
L’intégrale de par rapport à est .
Étape 4.2.4
Simplifiez
Étape 4.2.5
Remplacez toutes les occurrences de par .
Étape 4.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.3.2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.1
Différenciez .
Étape 4.3.2.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.3.2.1.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 4.3.2.1.4
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.2.1.4.2
Additionnez et .
Étape 4.3.2.2
Réécrivez le problème en utilisant et .
Étape 4.3.3
L’intégrale de par rapport à est .
Étape 4.3.4
Simplifiez
Étape 4.3.5
Remplacez toutes les occurrences de par .
Étape 4.4
Regroupez la constante d’intégration du côté droit comme .