Calcul infinitésimal Exemples

Résoudre l''équation différentielle e^y(dy)/(dx)=2x ?
?
Étape 1
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1
Associez et .
Étape 2.3.3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.2.1
Annulez le facteur commun.
Étape 2.3.3.2.2.2
Réécrivez l’expression.
Étape 2.3.3.2.3
Multipliez par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 3.2
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Développez en déplaçant hors du logarithme.
Étape 3.2.2
Le logarithme naturel de est .
Étape 3.2.3
Multipliez par .