Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=4y^3cos(x)^2
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.2.2
Associez et .
Étape 1.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Factorisez à partir de .
Étape 1.2.3.2
Annulez le facteur commun.
Étape 1.2.3.3
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Réécrivez comme .
Étape 2.2.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.2.1
Multipliez par .
Étape 2.2.3.2.2
Déplacez à gauche de .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 2.3.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.1
Associez et .
Étape 2.3.4.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.2.1
Factorisez à partir de .
Étape 2.3.4.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.2.2.1
Factorisez à partir de .
Étape 2.3.4.2.2.2
Annulez le facteur commun.
Étape 2.3.4.2.2.3
Réécrivez l’expression.
Étape 2.3.4.2.2.4
Divisez par .
Étape 2.3.5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.6
Appliquez la règle de la constante.
Étape 2.3.7
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.1.1
Différenciez .
Étape 2.3.7.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.7.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.7.1.4
Multipliez par .
Étape 2.3.7.2
Réécrivez le problème en utilisant et .
Étape 2.3.8
Associez et .
Étape 2.3.9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.10
L’intégrale de par rapport à est .
Étape 2.3.11
Simplifiez
Étape 2.3.12
Remplacez toutes les occurrences de par .
Étape 2.3.13
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.13.1
Associez et .
Étape 2.3.13.2
Appliquez la propriété distributive.
Étape 2.3.13.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.13.3.1
Annulez le facteur commun.
Étape 2.3.13.3.2
Réécrivez l’expression.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Multipliez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2.1.2
Annulez le facteur commun.
Étape 3.2.2.1.3
Réécrivez l’expression.
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.3.1.2
Multipliez par .
Étape 3.2.3.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.3.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.3.2
Remettez les facteurs dans l’ordre dans .
Étape 3.3
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Factorisez à partir de .
Étape 3.3.2.2
Factorisez à partir de .
Étape 3.3.2.3
Factorisez à partir de .
Étape 3.3.2.4
Factorisez à partir de .
Étape 3.3.2.5
Factorisez à partir de .
Étape 3.3.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Divisez chaque terme dans par .
Étape 3.3.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.3.2.1.2
Réécrivez l’expression.
Étape 3.3.3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.2.2.1
Annulez le facteur commun.
Étape 3.3.3.2.2.2
Divisez par .
Étape 3.3.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.3.1
Placez le signe moins devant la fraction.
Étape 3.3.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.3.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.3.5.3
La solution complète est le résultat des parties positive et négative de la solution.