Calcul infinitésimal Exemples

Résoudre l''équation différentielle x^2(dw)/(dx) = square root of w(8x+1)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Divisez par .
Étape 1.2
Regroupez des facteurs.
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Annulez le facteur commun.
Étape 1.4.2
Réécrivez l’expression.
Étape 1.5
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Utilisez pour réécrire comme .
Étape 2.2.1.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.3.2
Associez et .
Étape 2.2.1.3.3
Placez le signe moins devant la fraction.
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.2
Multipliez .
Étape 2.3.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1.1
Déplacez .
Étape 2.3.3.1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1.2.1
Élevez à la puissance .
Étape 2.3.3.1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.3.1.3
Additionnez et .
Étape 2.3.3.2
Multipliez par .
Étape 2.3.4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.6
L’intégrale de par rapport à est .
Étape 2.3.7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.8
Simplifiez
Étape 2.3.9
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Annulez le facteur commun.
Étape 3.1.2.2
Divisez par .
Étape 3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.1.3.1.2
Multipliez par .
Étape 3.1.3.1.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1.3.1
Factorisez à partir de .
Étape 3.1.3.1.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1.3.2.1
Factorisez à partir de .
Étape 3.1.3.1.3.2.2
Annulez le facteur commun.
Étape 3.1.3.1.3.2.3
Réécrivez l’expression.
Étape 3.1.3.1.3.2.4
Divisez par .
Étape 3.1.3.1.4
Simplifiez en déplaçant dans le logarithme.
Étape 3.1.3.1.5
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.
Étape 3.2
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 3.3
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.2.1
Annulez le facteur commun.
Étape 3.3.1.1.2.2
Réécrivez l’expression.
Étape 3.3.1.2
Simplifiez
Étape 4
Simplifiez la constante d’intégration.