Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Étape 1.1.2.1
Annulez le facteur commun de .
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Divisez par .
Étape 1.1.3
Simplifiez le côté droit.
Étape 1.1.3.1
Simplifiez chaque terme.
Étape 1.1.3.1.1
Annulez le facteur commun à et .
Étape 1.1.3.1.1.1
Factorisez à partir de .
Étape 1.1.3.1.1.2
Annulez les facteurs communs.
Étape 1.1.3.1.1.2.1
Factorisez à partir de .
Étape 1.1.3.1.1.2.2
Annulez le facteur commun.
Étape 1.1.3.1.1.2.3
Réécrivez l’expression.
Étape 1.1.3.1.2
Placez le signe moins devant la fraction.
Étape 1.2
Factorisez.
Étape 1.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.2
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 1.2.2.1
Multipliez par .
Étape 1.2.2.2
Élevez à la puissance .
Étape 1.2.2.3
Élevez à la puissance .
Étape 1.2.2.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.2.5
Additionnez et .
Étape 1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.4
Factorisez à partir de .
Étape 1.2.4.1
Élevez à la puissance .
Étape 1.2.4.2
Factorisez à partir de .
Étape 1.2.4.3
Factorisez à partir de .
Étape 1.2.4.4
Factorisez à partir de .
Étape 1.2.4.5
Multipliez par .
Étape 1.3
Regroupez des facteurs.
Étape 1.4
Multipliez les deux côtés par .
Étape 1.5
Annulez le facteur commun de .
Étape 1.5.1
Annulez le facteur commun.
Étape 1.5.2
Réécrivez l’expression.
Étape 1.6
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Appliquez les règles de base des exposants.
Étape 2.3.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.1.2
Multipliez les exposants dans .
Étape 2.3.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.2
Multipliez .
Étape 2.3.3
Simplifiez
Étape 2.3.3.1
Multipliez par .
Étape 2.3.3.2
Multipliez par en additionnant les exposants.
Étape 2.3.3.2.1
Déplacez .
Étape 2.3.3.2.2
Multipliez par .
Étape 2.3.3.2.2.1
Élevez à la puissance .
Étape 2.3.3.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.3.2.3
Additionnez et .
Étape 2.3.4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.7
L’intégrale de par rapport à est .
Étape 2.3.8
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 3.2
Utilisez la propriété du produit des logarithmes, .
Étape 3.3
Pour multiplier des valeurs absolues, multipliez les termes à l’intérieur de chaque valeur absolue.
Étape 3.4
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.5
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.6
Résolvez .
Étape 3.6.1
Réécrivez l’équation comme .
Étape 3.6.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 3.6.3
Divisez chaque terme dans par et simplifiez.
Étape 3.6.3.1
Divisez chaque terme dans par .
Étape 3.6.3.2
Simplifiez le côté gauche.
Étape 3.6.3.2.1
Annulez le facteur commun de .
Étape 3.6.3.2.1.1
Annulez le facteur commun.
Étape 3.6.3.2.1.2
Divisez par .
Étape 3.6.3.3
Simplifiez le côté droit.
Étape 3.6.3.3.1
Simplifiez le numérateur.
Étape 3.6.3.3.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.6.3.3.1.2
Associez les numérateurs sur le dénominateur commun.