Calcul infinitésimal Exemples

Résoudre l''équation différentielle x^2*(dy)/(dx)=y-xy
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Divisez par .
Étape 1.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1.1.1
Factorisez à partir de .
Étape 1.1.3.1.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1.1.2.1
Factorisez à partir de .
Étape 1.1.3.1.1.2.2
Annulez le facteur commun.
Étape 1.1.3.1.1.2.3
Réécrivez l’expression.
Étape 1.1.3.1.2
Placez le signe moins devant la fraction.
Étape 1.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2.2
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Multipliez par .
Étape 1.2.2.2
Élevez à la puissance .
Étape 1.2.2.3
Élevez à la puissance .
Étape 1.2.2.4
Utilisez la règle de puissance pour associer des exposants.
Étape 1.2.2.5
Additionnez et .
Étape 1.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 1.2.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Élevez à la puissance .
Étape 1.2.4.2
Factorisez à partir de .
Étape 1.2.4.3
Factorisez à partir de .
Étape 1.2.4.4
Factorisez à partir de .
Étape 1.2.4.5
Multipliez par .
Étape 1.3
Regroupez des facteurs.
Étape 1.4
Multipliez les deux côtés par .
Étape 1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Annulez le facteur commun.
Étape 1.5.2
Réécrivez l’expression.
Étape 1.6
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.1.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.2
Multipliez .
Étape 2.3.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Multipliez par .
Étape 2.3.3.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1
Déplacez .
Étape 2.3.3.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.2.1
Élevez à la puissance .
Étape 2.3.3.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.3.2.3
Additionnez et .
Étape 2.3.4
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.7
L’intégrale de par rapport à est .
Étape 2.3.8
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 3.2
Utilisez la propriété du produit des logarithmes, .
Étape 3.3
Pour multiplier des valeurs absolues, multipliez les termes à l’intérieur de chaque valeur absolue.
Étape 3.4
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.5
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Réécrivez l’équation comme .
Étape 3.6.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 3.6.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.1
Divisez chaque terme dans par .
Étape 3.6.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.2.1.1
Annulez le facteur commun.
Étape 3.6.3.2.1.2
Divisez par .
Étape 3.6.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.3.3.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.6.3.3.1.2
Associez les numérateurs sur le dénominateur commun.