Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Laissez . Remplacez par .
Étape 2
Résolvez pour .
Étape 3
Utilisez la règle de produit pour déterminer la dérivée de par rapport à .
Étape 4
Remplacez par .
Étape 5
Étape 5.1
Séparez les variables.
Étape 5.1.1
Résolvez .
Étape 5.1.1.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 5.1.1.1.1
Soustrayez des deux côtés de l’équation.
Étape 5.1.1.1.2
Associez les termes opposés dans .
Étape 5.1.1.1.2.1
Soustrayez de .
Étape 5.1.1.1.2.2
Additionnez et .
Étape 5.1.1.2
Divisez chaque terme dans par et simplifiez.
Étape 5.1.1.2.1
Divisez chaque terme dans par .
Étape 5.1.1.2.2
Simplifiez le côté gauche.
Étape 5.1.1.2.2.1
Annulez le facteur commun de .
Étape 5.1.1.2.2.1.1
Annulez le facteur commun.
Étape 5.1.1.2.2.1.2
Divisez par .
Étape 5.1.2
Réécrivez l’équation.
Étape 5.2
Intégrez les deux côtés.
Étape 5.2.1
Définissez une intégrale de chaque côté.
Étape 5.2.2
Appliquez la règle de la constante.
Étape 5.2.3
Intégrez le côté droit.
Étape 5.2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2.3.2
L’intégrale de par rapport à est .
Étape 5.2.3.3
Simplifiez
Étape 5.2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 6
Remplacez par .
Étape 7
Étape 7.1
Multipliez les deux côtés par .
Étape 7.2
Simplifiez
Étape 7.2.1
Simplifiez le côté gauche.
Étape 7.2.1.1
Annulez le facteur commun de .
Étape 7.2.1.1.1
Annulez le facteur commun.
Étape 7.2.1.1.2
Réécrivez l’expression.
Étape 7.2.2
Simplifiez le côté droit.
Étape 7.2.2.1
Simplifiez .
Étape 7.2.2.1.1
Simplifiez chaque terme.
Étape 7.2.2.1.1.1
Simplifiez en déplaçant dans le logarithme.
Étape 7.2.2.1.1.2
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.
Étape 7.2.2.1.2
Simplifiez en multipliant.
Étape 7.2.2.1.2.1
Appliquez la propriété distributive.
Étape 7.2.2.1.2.2
Simplifiez l’expression.
Étape 7.2.2.1.2.2.1
Remettez les facteurs dans l’ordre dans .
Étape 7.2.2.1.2.2.2
Remettez dans l’ordre et .