Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Laissez . Remplacez toutes les occurrences de par .
Étape 2
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4
Réécrivez comme .
Étape 3
Remplacez par .
Étape 4
Étape 4.1
Additionnez et .
Étape 4.2
Additionnez et .
Étape 5
Étape 5.1
Résolvez .
Étape 5.1.1
Multipliez les deux côtés par .
Étape 5.1.2
Simplifiez
Étape 5.1.2.1
Simplifiez le côté gauche.
Étape 5.1.2.1.1
Annulez le facteur commun de .
Étape 5.1.2.1.1.1
Annulez le facteur commun.
Étape 5.1.2.1.1.2
Réécrivez l’expression.
Étape 5.1.2.2
Simplifiez le côté droit.
Étape 5.1.2.2.1
Multipliez par en additionnant les exposants.
Étape 5.1.2.2.1.1
Déplacez .
Étape 5.1.2.2.1.2
Multipliez par .
Étape 5.2
Multipliez les deux côtés par .
Étape 5.3
Annulez le facteur commun de .
Étape 5.3.1
Factorisez à partir de .
Étape 5.3.2
Annulez le facteur commun.
Étape 5.3.3
Réécrivez l’expression.
Étape 5.4
Réécrivez l’équation.
Étape 6
Étape 6.1
Définissez une intégrale de chaque côté.
Étape 6.2
Intégrez le côté gauche.
Étape 6.2.1
Appliquez les règles de base des exposants.
Étape 6.2.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 6.2.1.2
Multipliez les exposants dans .
Étape 6.2.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.2.1.2.2
Multipliez par .
Étape 6.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 6.2.3
Réécrivez comme .
Étape 6.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 6.4
Regroupez la constante d’intégration du côté droit comme .
Étape 7
Étape 7.1
Associez et .
Étape 7.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 7.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 7.2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 7.2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 7.2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 7.2.5
n’a pas de facteur hormis et .
est un nombre premier
Étape 7.2.6
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 7.2.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 7.2.8
Le facteur pour est lui-même.
se produit fois.
Étape 7.2.9
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 7.2.10
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 7.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 7.3.1
Multipliez chaque terme dans par .
Étape 7.3.2
Simplifiez le côté gauche.
Étape 7.3.2.1
Annulez le facteur commun de .
Étape 7.3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 7.3.2.1.2
Factorisez à partir de .
Étape 7.3.2.1.3
Annulez le facteur commun.
Étape 7.3.2.1.4
Réécrivez l’expression.
Étape 7.3.2.2
Multipliez par .
Étape 7.3.3
Simplifiez le côté droit.
Étape 7.3.3.1
Simplifiez chaque terme.
Étape 7.3.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 7.3.3.1.2
Annulez le facteur commun de .
Étape 7.3.3.1.2.1
Annulez le facteur commun.
Étape 7.3.3.1.2.2
Réécrivez l’expression.
Étape 7.3.3.1.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 7.4
Résolvez l’équation.
Étape 7.4.1
Réécrivez l’équation comme .
Étape 7.4.2
Factorisez à partir de .
Étape 7.4.2.1
Factorisez à partir de .
Étape 7.4.2.2
Factorisez à partir de .
Étape 7.4.2.3
Factorisez à partir de .
Étape 7.4.3
Divisez chaque terme dans par et simplifiez.
Étape 7.4.3.1
Divisez chaque terme dans par .
Étape 7.4.3.2
Simplifiez le côté gauche.
Étape 7.4.3.2.1
Annulez le facteur commun de .
Étape 7.4.3.2.1.1
Annulez le facteur commun.
Étape 7.4.3.2.1.2
Divisez par .
Étape 7.4.3.3
Simplifiez le côté droit.
Étape 7.4.3.3.1
Placez le signe moins devant la fraction.
Étape 8
Simplifiez la constante d’intégration.
Étape 9
Remplacez toutes les occurrences de par .
Étape 10
Étape 10.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 10.2
Développez le côté gauche.
Étape 10.2.1
Développez en déplaçant hors du logarithme.
Étape 10.2.2
Le logarithme naturel de est .
Étape 10.2.3
Multipliez par .
Étape 10.3
Soustrayez des deux côtés de l’équation.