Calcul infinitésimal Exemples

Résoudre l''équation différentielle x(yd)x-(x^2+y^2)dy=0
Étape 1
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4
Multipliez par .
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Additionnez et .
Étape 2.6.2
Multipliez par .
Étape 3
Vérifiez que .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme le côté gauche n’est pas égal au côté droit, l’équation n’est pas une identité.
n’est pas une identité.
n’est pas une identité.
Étape 4
Déterminez le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez par .
Étape 4.2
Remplacez par .
Étape 4.3
Remplacez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Soustrayez de .
Étape 4.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Annulez le facteur commun.
Étape 4.3.3.2
Réécrivez l’expression.
Étape 4.3.4
Remplacez par .
Étape 4.4
Déterminez le facteur d’intégration .
Étape 5
Évaluez l’intégrale .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.3
Multipliez par .
Étape 5.4
L’intégrale de par rapport à est .
Étape 5.5
Simplifiez
Étape 5.6
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.6.1
Simplifiez en déplaçant dans le logarithme.
Étape 5.6.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.6.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6
Multipliez les deux côtés de par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Multipliez par .
Étape 6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Factorisez à partir de .
Étape 6.2.3
Annulez le facteur commun.
Étape 6.2.4
Réécrivez l’expression.
Étape 6.3
Associez et .
Étape 6.4
Multipliez par .
Étape 6.5
Appliquez la propriété distributive.
Étape 6.6
Multipliez par .
Étape 6.7
Factorisez à partir de .
Étape 6.8
Factorisez à partir de .
Étape 6.9
Factorisez à partir de .
Étape 6.10
Réécrivez comme .
Étape 6.11
Placez le signe moins devant la fraction.
Étape 7
Définissez égal à l’intégrale de .
Étape 8
Intégrez pour déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Réécrivez comme .
Étape 8.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.3.2.1
Multipliez par .
Étape 8.3.2.2
Déplacez à gauche de .
Étape 8.3.2.3
Multipliez par .
Étape 8.3.2.4
Associez et .
Étape 9
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 10
Définissez .
Étape 11
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Différenciez par rapport à .
Étape 11.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 11.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.3.2
Réécrivez comme .
Étape 11.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 11.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 11.3.3.3
Remplacez toutes les occurrences de par .
Étape 11.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 11.3.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 11.3.5.2
Multipliez par .
Étape 11.3.6
Multipliez par .
Étape 11.3.7
Élevez à la puissance .
Étape 11.3.8
Utilisez la règle de puissance pour associer des exposants.
Étape 11.3.9
Soustrayez de .
Étape 11.3.10
Associez et .
Étape 11.3.11
Associez et .
Étape 11.3.12
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 11.3.13
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 11.3.13.1
Factorisez à partir de .
Étape 11.3.13.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 11.3.13.2.1
Factorisez à partir de .
Étape 11.3.13.2.2
Annulez le facteur commun.
Étape 11.3.13.2.3
Réécrivez l’expression.
Étape 11.3.14
Placez le signe moins devant la fraction.
Étape 11.4
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 11.5
Remettez les termes dans l’ordre.
Étape 12
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.1
Ajoutez aux deux côtés de l’équation.
Étape 12.1.1.2
Associez les numérateurs sur le dénominateur commun.
Étape 12.1.1.3
Additionnez et .
Étape 12.1.1.4
Additionnez et .
Étape 12.1.1.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.5.1
Multipliez par .
Étape 12.1.1.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 12.1.1.5.2.1
Factorisez à partir de .
Étape 12.1.1.5.2.2
Annulez le facteur commun.
Étape 12.1.1.5.2.3
Réécrivez l’expression.
Étape 12.1.2
Soustrayez des deux côtés de l’équation.
Étape 13
Déterminez la primitive de afin de déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Intégrez les deux côtés de .
Étape 13.2
Évaluez .
Étape 13.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13.4
L’intégrale de par rapport à est .
Étape 13.5
Simplifiez
Étape 14
Remplacez par dans .