Calcul infinitésimal Exemples

Résoudre l''équation différentielle x(1+y^2)dx=ydy
Étape 1
Réécrivez l’équation.
Étape 2
Multipliez les deux côtés par .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Associez et .
Étape 3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Annulez le facteur commun.
Étape 3.2.3
Réécrivez l’expression.
Étape 4
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez une intégrale de chaque côté.
Étape 4.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Différenciez .
Étape 4.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.2.1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.1.1.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.1.1.5
Additionnez et .
Étape 4.2.1.2
Réécrivez le problème en utilisant et .
Étape 4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Multipliez par .
Étape 4.2.2.2
Déplacez à gauche de .
Étape 4.2.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.2.4
L’intégrale de par rapport à est .
Étape 4.2.5
Simplifiez
Étape 4.2.6
Remplacez toutes les occurrences de par .
Étape 4.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 4.4
Regroupez la constante d’intégration du côté droit comme .
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez les deux côtés de l’équation par .
Étape 5.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Associez et .
Étape 5.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.2.1
Annulez le facteur commun.
Étape 5.2.1.1.2.2
Réécrivez l’expression.
Étape 5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.1
Associez et .
Étape 5.2.2.1.2
Appliquez la propriété distributive.
Étape 5.2.2.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.3.1
Annulez le facteur commun.
Étape 5.2.2.1.3.2
Réécrivez l’expression.
Étape 5.3
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 5.4
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 5.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Réécrivez l’équation comme .
Étape 5.5.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 5.5.3
Soustrayez des deux côtés de l’équation.
Étape 5.5.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6
Regroupez les termes constants.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez la constante d’intégration.
Étape 6.2
Réécrivez comme .
Étape 6.3
Remettez dans l’ordre et .
Étape 6.4
Combinez des constantes avec le plus ou le moins.