Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=-4e^(x-8) , y(8)=8
,
Étape 1
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Différenciez .
Étape 2.3.2.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.2.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2.1.5
Additionnez et .
Étape 2.3.2.2
Réécrivez le problème en utilisant et .
Étape 2.3.3
L’intégrale de par rapport à est .
Étape 2.3.4
Simplifiez
Étape 2.3.5
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Soustrayez de .
Étape 4.2.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Tout ce qui est élevé à la puissance est .
Étape 4.2.2.2
Multipliez par .
Étape 4.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Ajoutez aux deux côtés de l’équation.
Étape 4.3.2
Additionnez et .
Étape 5
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez par .