Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Définissez l’intégration.
Étape 1.2
Intégrez .
Étape 1.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 1.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 1.2.3
Simplifiez la réponse.
Étape 1.2.3.1
Réécrivez comme .
Étape 1.2.3.2
Simplifiez
Étape 1.2.3.2.1
Associez et .
Étape 1.2.3.2.2
Annulez le facteur commun à et .
Étape 1.2.3.2.2.1
Factorisez à partir de .
Étape 1.2.3.2.2.2
Annulez les facteurs communs.
Étape 1.2.3.2.2.2.1
Factorisez à partir de .
Étape 1.2.3.2.2.2.2
Annulez le facteur commun.
Étape 1.2.3.2.2.2.3
Réécrivez l’expression.
Étape 1.2.3.2.2.2.4
Divisez par .
Étape 1.3
Retirez la constante d’intégration.
Étape 2
Étape 2.1
Multipliez chaque terme par .
Étape 2.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.4
Remettez les facteurs dans l’ordre dans .
Étape 3
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 4
Définissez une intégrale de chaque côté.
Étape 5
Intégrez le côté gauche.
Étape 6
Étape 6.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6.2
Laissez . Alors , donc . Réécrivez avec et .
Étape 6.2.1
Laissez . Déterminez .
Étape 6.2.1.1
Différenciez .
Étape 6.2.1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 6.2.1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 6.2.1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 6.2.1.2.3
Remplacez toutes les occurrences de par .
Étape 6.2.1.3
Différenciez.
Étape 6.2.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.2.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 6.2.1.3.3
Multipliez par .
Étape 6.2.1.4
Simplifiez
Étape 6.2.1.4.1
Réorganisez les facteurs de .
Étape 6.2.1.4.2
Remettez les facteurs dans l’ordre dans .
Étape 6.2.2
Réécrivez le problème en utilisant et .
Étape 6.3
Placez le signe moins devant la fraction.
Étape 6.4
Appliquez la règle de la constante.
Étape 6.5
Simplifiez la réponse.
Étape 6.5.1
Simplifiez
Étape 6.5.2
Simplifiez
Étape 6.5.2.1
Associez et .
Étape 6.5.2.2
Multipliez par .
Étape 6.5.2.3
Associez et .
Étape 6.5.2.4
Annulez le facteur commun à et .
Étape 6.5.2.4.1
Factorisez à partir de .
Étape 6.5.2.4.2
Annulez les facteurs communs.
Étape 6.5.2.4.2.1
Factorisez à partir de .
Étape 6.5.2.4.2.2
Annulez le facteur commun.
Étape 6.5.2.4.2.3
Réécrivez l’expression.
Étape 6.5.2.4.2.4
Divisez par .
Étape 6.5.3
Remplacez toutes les occurrences de par .
Étape 7
Étape 7.1
Divisez chaque terme dans par .
Étape 7.2
Simplifiez le côté gauche.
Étape 7.2.1
Annulez le facteur commun de .
Étape 7.2.1.1
Annulez le facteur commun.
Étape 7.2.1.2
Divisez par .
Étape 7.3
Simplifiez le côté droit.
Étape 7.3.1
Annulez le facteur commun de .
Étape 7.3.1.1
Annulez le facteur commun.
Étape 7.3.1.2
Divisez par .