Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(3y+x^2y)/(x-4xy)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Factorisez à partir de .
Étape 1.1.3
Factorisez à partir de .
Étape 1.1.4
Multipliez par .
Étape 1.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Élevez à la puissance .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 1.2.4
Factorisez à partir de .
Étape 1.2.5
Multipliez par .
Étape 1.3
Regroupez des facteurs.
Étape 1.4
Multipliez les deux côtés par .
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Multipliez par .
Étape 1.5.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.2.1
Factorisez à partir de .
Étape 1.5.2.2
Annulez le facteur commun.
Étape 1.5.2.3
Réécrivez l’expression.
Étape 1.5.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.1
Annulez le facteur commun.
Étape 1.5.3.2
Réécrivez l’expression.
Étape 1.6
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez la fraction en plusieurs fractions.
Étape 2.2.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Annulez le facteur commun.
Étape 2.2.3.2
Divisez par .
Étape 2.2.4
L’intégrale de par rapport à est .
Étape 2.2.5
Appliquez la règle de la constante.
Étape 2.2.6
Simplifiez
Étape 2.2.7
Remettez les termes dans l’ordre.
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Divisez la fraction en plusieurs fractions.
Étape 2.3.2
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Factorisez à partir de .
Étape 2.3.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.2.1
Élevez à la puissance .
Étape 2.3.3.2.2
Factorisez à partir de .
Étape 2.3.3.2.3
Annulez le facteur commun.
Étape 2.3.3.2.4
Réécrivez l’expression.
Étape 2.3.3.2.5
Divisez par .
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
L’intégrale de par rapport à est .
Étape 2.3.6
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.7
Simplifiez
Étape 2.3.8
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .