Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Factorisez à partir de .
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Simplifiez
Étape 1.4.1
Annulez le facteur commun de .
Étape 1.4.1.1
Factorisez à partir de .
Étape 1.4.1.2
Annulez le facteur commun.
Étape 1.4.1.3
Réécrivez l’expression.
Étape 1.4.2
Appliquez la propriété distributive.
Étape 1.4.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.4.4
Déplacez à gauche de .
Étape 1.4.5
Multipliez par en additionnant les exposants.
Étape 1.4.5.1
Déplacez .
Étape 1.4.5.2
Multipliez par .
Étape 1.4.5.2.1
Élevez à la puissance .
Étape 1.4.5.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.4.5.3
Additionnez et .
Étape 1.5
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Appliquez les règles de base des exposants.
Étape 2.2.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.1.2
Multipliez les exposants dans .
Étape 2.2.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Réécrivez comme .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.6
Simplifiez
Étape 2.3.6.1
Simplifiez
Étape 2.3.6.2
Simplifiez
Étape 2.3.6.2.1
Associez et .
Étape 2.3.6.2.2
Annulez le facteur commun de .
Étape 2.3.6.2.2.1
Annulez le facteur commun.
Étape 2.3.6.2.2.2
Réécrivez l’expression.
Étape 2.3.6.2.3
Multipliez par .
Étape 2.3.6.2.4
Associez et .
Étape 2.3.6.2.5
Annulez le facteur commun à et .
Étape 2.3.6.2.5.1
Factorisez à partir de .
Étape 2.3.6.2.5.2
Annulez les facteurs communs.
Étape 2.3.6.2.5.2.1
Factorisez à partir de .
Étape 2.3.6.2.5.2.2
Annulez le facteur commun.
Étape 2.3.6.2.5.2.3
Réécrivez l’expression.
Étape 2.3.6.2.5.2.4
Divisez par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 3.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 3.2.1
Multipliez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2.1.2
Annulez le facteur commun.
Étape 3.2.2.1.3
Réécrivez l’expression.
Étape 3.3
Résolvez l’équation.
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Factorisez à partir de .
Étape 3.3.2.1
Factorisez à partir de .
Étape 3.3.2.2
Factorisez à partir de .
Étape 3.3.2.3
Factorisez à partir de .
Étape 3.3.2.4
Factorisez à partir de .
Étape 3.3.2.5
Factorisez à partir de .
Étape 3.3.3
Divisez chaque terme dans par et simplifiez.
Étape 3.3.3.1
Divisez chaque terme dans par .
Étape 3.3.3.2
Simplifiez le côté gauche.
Étape 3.3.3.2.1
Annulez le facteur commun de .
Étape 3.3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.3.2.1.2
Divisez par .
Étape 3.3.3.3
Simplifiez le côté droit.
Étape 3.3.3.3.1
Placez le signe moins devant la fraction.