Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Factorisez à partir de .
Étape 1.2
Remettez dans l’ordre et .
Étape 2
Pour résoudre l’équation différentielle, laissez où est l’exposant de .
Étape 3
Résolvez l’équation pour .
Étape 4
Prenez la dérivée de par rapport à .
Étape 5
Étape 5.1
Prenez la dérivée de .
Étape 5.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 5.3
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 5.4
Différenciez en utilisant la règle de la constante.
Étape 5.4.1
Multipliez par .
Étape 5.4.2
Multipliez les exposants dans .
Étape 5.4.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.4.2.2
Annulez le facteur commun de .
Étape 5.4.2.2.1
Factorisez à partir de .
Étape 5.4.2.2.2
Annulez le facteur commun.
Étape 5.4.2.2.3
Réécrivez l’expression.
Étape 5.4.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.4.4
Simplifiez l’expression.
Étape 5.4.4.1
Multipliez par .
Étape 5.4.4.2
Soustrayez de .
Étape 5.4.4.3
Placez le signe moins devant la fraction.
Étape 5.5
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 5.5.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 5.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 5.5.3
Remplacez toutes les occurrences de par .
Étape 5.6
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.7
Associez et .
Étape 5.8
Associez les numérateurs sur le dénominateur commun.
Étape 5.9
Simplifiez le numérateur.
Étape 5.9.1
Multipliez par .
Étape 5.9.2
Soustrayez de .
Étape 5.10
Placez le signe moins devant la fraction.
Étape 5.11
Associez et .
Étape 5.12
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 5.13
Réécrivez comme .
Étape 5.14
Associez et .
Étape 5.15
Réécrivez comme un produit.
Étape 5.16
Multipliez par .
Étape 5.17
Multipliez par en additionnant les exposants.
Étape 5.17.1
Déplacez .
Étape 5.17.2
Utilisez la règle de puissance pour associer des exposants.
Étape 5.17.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.17.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 5.17.4.1
Multipliez par .
Étape 5.17.4.2
Multipliez par .
Étape 5.17.5
Associez les numérateurs sur le dénominateur commun.
Étape 5.17.6
Additionnez et .
Étape 6
Remplacez par et par dans l’équation d’origine .
Étape 7
Étape 7.1
Réécrivez l’équation différentielle comme .
Étape 7.1.1
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 7.1.1.1
Multipliez chaque terme dans par .
Étape 7.1.1.2
Simplifiez le côté gauche.
Étape 7.1.1.2.1
Simplifiez chaque terme.
Étape 7.1.1.2.1.1
Annulez le facteur commun de .
Étape 7.1.1.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 7.1.1.2.1.1.2
Factorisez à partir de .
Étape 7.1.1.2.1.1.3
Annulez le facteur commun.
Étape 7.1.1.2.1.1.4
Réécrivez l’expression.
Étape 7.1.1.2.1.2
Multipliez par .
Étape 7.1.1.2.1.3
Multipliez par .
Étape 7.1.1.2.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 7.1.1.2.1.5
Multipliez par en additionnant les exposants.
Étape 7.1.1.2.1.5.1
Déplacez .
Étape 7.1.1.2.1.5.2
Utilisez la règle de puissance pour associer des exposants.
Étape 7.1.1.2.1.5.3
Associez les numérateurs sur le dénominateur commun.
Étape 7.1.1.2.1.5.4
Soustrayez de .
Étape 7.1.1.2.1.5.5
Divisez par .
Étape 7.1.1.2.1.6
Simplifiez .
Étape 7.1.1.2.1.7
Multipliez par .
Étape 7.1.1.2.1.8
Associez et .
Étape 7.1.1.2.1.9
Placez le signe moins devant la fraction.
Étape 7.1.1.2.1.10
Associez et .
Étape 7.1.1.2.1.11
Déplacez à gauche de .
Étape 7.1.1.3
Simplifiez le côté droit.
Étape 7.1.1.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 7.1.1.3.2
Multipliez par .
Étape 7.1.1.3.3
Multipliez les exposants dans .
Étape 7.1.1.3.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 7.1.1.3.3.2
Multipliez .
Étape 7.1.1.3.3.2.1
Multipliez par .
Étape 7.1.1.3.3.2.2
Associez et .
Étape 7.1.1.3.3.3
Placez le signe moins devant la fraction.
Étape 7.1.1.3.4
Multipliez par en additionnant les exposants.
Étape 7.1.1.3.4.1
Déplacez .
Étape 7.1.1.3.4.2
Utilisez la règle de puissance pour associer des exposants.
Étape 7.1.1.3.4.3
Associez les numérateurs sur le dénominateur commun.
Étape 7.1.1.3.4.4
Soustrayez de .
Étape 7.1.1.3.4.5
Divisez par .
Étape 7.1.1.3.5
Simplifiez .
Étape 7.1.2
Factorisez à partir de .
Étape 7.1.3
Remettez dans l’ordre et .
Étape 7.2
Le facteur d’intégration est défini par la formule , où .
Étape 7.2.1
Définissez l’intégration.
Étape 7.2.2
Intégrez .
Étape 7.2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.2.2.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.2.2.3
Multipliez par .
Étape 7.2.2.4
L’intégrale de par rapport à est .
Étape 7.2.2.5
Simplifiez
Étape 7.2.3
Retirez la constante d’intégration.
Étape 7.2.4
Utilisez la règle de puissance logarithmique.
Étape 7.2.5
L’élévation à une puissance et log sont des fonctions inverses.
Étape 7.2.6
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 7.3
Multipliez chaque terme par le facteur d’intégration .
Étape 7.3.1
Multipliez chaque terme par .
Étape 7.3.2
Simplifiez chaque terme.
Étape 7.3.2.1
Associez et .
Étape 7.3.2.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 7.3.2.3
Associez et .
Étape 7.3.2.4
Multipliez .
Étape 7.3.2.4.1
Multipliez par .
Étape 7.3.2.4.2
Multipliez par en additionnant les exposants.
Étape 7.3.2.4.2.1
Multipliez par .
Étape 7.3.2.4.2.1.1
Élevez à la puissance .
Étape 7.3.2.4.2.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 7.3.2.4.2.2
Additionnez et .
Étape 7.3.3
Associez et .
Étape 7.3.4
Placez le signe moins devant la fraction.
Étape 7.4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 7.5
Définissez une intégrale de chaque côté.
Étape 7.6
Intégrez le côté gauche.
Étape 7.7
Intégrez le côté droit.
Étape 7.7.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.7.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.7.3
Simplifiez l’expression.
Étape 7.7.3.1
Multipliez par .
Étape 7.7.3.2
Retirez du dénominateur en l’élevant à la puissance .
Étape 7.7.3.3
Multipliez les exposants dans .
Étape 7.7.3.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 7.7.3.3.2
Multipliez par .
Étape 7.7.4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 7.7.5
Simplifiez la réponse.
Étape 7.7.5.1
Simplifiez
Étape 7.7.5.1.1
Associez et .
Étape 7.7.5.1.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 7.7.5.2
Simplifiez
Étape 7.7.5.3
Simplifiez
Étape 7.7.5.3.1
Multipliez par .
Étape 7.7.5.3.2
Associez et .
Étape 7.8
Résolvez .
Étape 7.8.1
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Étape 7.8.1.1
Soustrayez des deux côtés de l’équation.
Étape 7.8.1.2
Soustrayez des deux côtés de l’équation.
Étape 7.8.1.3
Associez et .
Étape 7.8.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 7.8.2.1
Ajoutez aux deux côtés de l’équation.
Étape 7.8.2.2
Ajoutez aux deux côtés de l’équation.
Étape 7.8.3
Multipliez les deux côtés par .
Étape 7.8.4
Simplifiez
Étape 7.8.4.1
Simplifiez le côté gauche.
Étape 7.8.4.1.1
Annulez le facteur commun de .
Étape 7.8.4.1.1.1
Annulez le facteur commun.
Étape 7.8.4.1.1.2
Réécrivez l’expression.
Étape 7.8.4.2
Simplifiez le côté droit.
Étape 7.8.4.2.1
Simplifiez .
Étape 7.8.4.2.1.1
Appliquez la propriété distributive.
Étape 7.8.4.2.1.2
Annulez le facteur commun de .
Étape 7.8.4.2.1.2.1
Factorisez à partir de .
Étape 7.8.4.2.1.2.2
Factorisez à partir de .
Étape 7.8.4.2.1.2.3
Annulez le facteur commun.
Étape 7.8.4.2.1.2.4
Réécrivez l’expression.
Étape 7.8.4.2.1.3
Associez et .
Étape 7.8.4.2.1.4
Remettez dans l’ordre et .
Étape 8
Remplacez par .