Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Supposez que toutes les solutions sont de la forme .
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.2
Déterminez la dérivée seconde.
Étape 2.3
Remplacez dans l’équation différentielle.
Étape 2.4
Supprimez les parenthèses.
Étape 2.5
Factorisez .
Étape 2.5.1
Factorisez à partir de .
Étape 2.5.2
Factorisez à partir de .
Étape 2.5.3
Factorisez à partir de .
Étape 2.5.4
Factorisez à partir de .
Étape 2.5.5
Factorisez à partir de .
Étape 2.6
Comme les exponentielles ne peuvent jamais être nulles, divisez les deux côtés par .
Étape 3
Étape 3.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.3
Simplifiez
Étape 3.3.1
Simplifiez le numérateur.
Étape 3.3.1.1
Élevez à la puissance .
Étape 3.3.1.2
Multipliez .
Étape 3.3.1.2.1
Multipliez par .
Étape 3.3.1.2.2
Multipliez par .
Étape 3.3.1.3
Additionnez et .
Étape 3.3.1.4
Réécrivez comme .
Étape 3.3.1.4.1
Factorisez à partir de .
Étape 3.3.1.4.2
Réécrivez comme .
Étape 3.3.1.5
Extrayez les termes de sous le radical.
Étape 3.3.2
Multipliez par .
Étape 3.3.3
Simplifiez .
Étape 3.4
Simplifiez l’expression pour résoudre la partie du .
Étape 3.4.1
Simplifiez le numérateur.
Étape 3.4.1.1
Élevez à la puissance .
Étape 3.4.1.2
Multipliez .
Étape 3.4.1.2.1
Multipliez par .
Étape 3.4.1.2.2
Multipliez par .
Étape 3.4.1.3
Additionnez et .
Étape 3.4.1.4
Réécrivez comme .
Étape 3.4.1.4.1
Factorisez à partir de .
Étape 3.4.1.4.2
Réécrivez comme .
Étape 3.4.1.5
Extrayez les termes de sous le radical.
Étape 3.4.2
Multipliez par .
Étape 3.4.3
Simplifiez .
Étape 3.4.4
Remplacez le par .
Étape 3.4.5
Réécrivez comme .
Étape 3.4.6
Factorisez à partir de .
Étape 3.4.7
Factorisez à partir de .
Étape 3.4.8
Placez le signe moins devant la fraction.
Étape 3.5
Simplifiez l’expression pour résoudre la partie du .
Étape 3.5.1
Simplifiez le numérateur.
Étape 3.5.1.1
Élevez à la puissance .
Étape 3.5.1.2
Multipliez .
Étape 3.5.1.2.1
Multipliez par .
Étape 3.5.1.2.2
Multipliez par .
Étape 3.5.1.3
Additionnez et .
Étape 3.5.1.4
Réécrivez comme .
Étape 3.5.1.4.1
Factorisez à partir de .
Étape 3.5.1.4.2
Réécrivez comme .
Étape 3.5.1.5
Extrayez les termes de sous le radical.
Étape 3.5.2
Multipliez par .
Étape 3.5.3
Simplifiez .
Étape 3.5.4
Remplacez le par .
Étape 3.5.5
Réécrivez comme .
Étape 3.5.6
Factorisez à partir de .
Étape 3.5.7
Factorisez à partir de .
Étape 3.5.8
Placez le signe moins devant la fraction.
Étape 3.6
La réponse finale est la combinaison des deux solutions.
Étape 4
Les deux valeurs déterminées de permettent de construire deux solutions.
Étape 5
D’après le principe de superposition, la solution générale est une combinaison linéaire des deux solutions pour une équation différentielle linéaire homogène du second ordre.
Étape 6
Étape 6.1
Associez et .
Étape 6.2
Associez et .