Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx) = square root of xy^2
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Remettez dans l’ordre et .
Étape 1.1.2
Extrayez les termes de sous le radical.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Factorisez à partir de .
Étape 1.3.2
Annulez le facteur commun.
Étape 1.3.3
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Utilisez pour réécrire comme .
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Associez et .
Étape 3.3.3
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 4
Regroupez les termes constants.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Remettez dans l’ordre et .
Étape 4.3
Combinez des constantes avec le plus ou le moins.