Calcul infinitésimal Exemples

Résoudre l''équation différentielle 3x^2e^ydx+(x^3e^y-1)dy=0
Étape 1
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Déplacez à gauche de .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Additionnez et .
Étape 2.5.2
Remettez les facteurs dans l’ordre dans .
Étape 3
Vérifiez que .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme il a été démontré que les deux côtés étaient équivalents, l’équation est une identité.
est une identité.
est une identité.
Étape 4
Définissez égal à l’intégrale de .
Étape 5
Intégrez pour déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 5.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Réécrivez comme .
Étape 5.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.1
Associez et .
Étape 5.3.2.2
Associez et .
Étape 5.3.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.2.3.1
Annulez le facteur commun.
Étape 5.3.2.3.2
Divisez par .
Étape 6
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 7
Définissez .
Étape 8
Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Différenciez par rapport à .
Étape 8.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 8.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.3.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 8.4
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 8.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.5.1
Remettez les termes dans l’ordre.
Étape 8.5.2
Remettez les facteurs dans l’ordre dans .
Étape 9
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Soustrayez des deux côtés de l’équation.
Étape 9.1.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.2.1
Soustrayez de .
Étape 9.1.2.2
Soustrayez de .
Étape 10
Déterminez la primitive de afin de déterminer .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Intégrez les deux côtés de .
Étape 10.2
Évaluez .
Étape 10.3
Appliquez la règle de la constante.
Étape 11
Remplacez par dans .
Étape 12
Remettez les facteurs dans l’ordre dans .