Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=y^2+9
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Annulez le facteur commun.
Étape 1.2.2
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Remettez dans l’ordre et .
Étape 2.2.1.2
Réécrivez comme .
Étape 2.2.2
L’intégrale de par rapport à est .
Étape 2.2.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Associez et .
Étape 2.2.3.2
Réécrivez comme .
Étape 2.3
Appliquez la règle de la constante.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Multipliez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
Associez et .
Étape 3.1.2.2
Associez et .
Étape 3.1.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.3.1
Annulez le facteur commun.
Étape 3.1.2.3.2
Réécrivez l’expression.
Étape 3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1.1
Déplacez à gauche de .
Étape 3.1.3.1.2
Déplacez à gauche de .
Étape 3.2
Prenez l’arc tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de l’arc tangente.
Étape 3.3
Multipliez les deux côtés de l’équation par .
Étape 3.4
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1
Annulez le facteur commun.
Étape 3.4.1.2
Réécrivez l’expression.
Étape 4
Simplifiez la constante d’intégration.