Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Appliquez la règle de produit à .
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Étape 1.3.1
Annulez le facteur commun de .
Étape 1.3.1.1
Annulez le facteur commun.
Étape 1.3.1.2
Réécrivez l’expression.
Étape 1.3.2
Réécrivez comme .
Étape 1.3.3
Développez à l’aide de la méthode FOIL.
Étape 1.3.3.1
Appliquez la propriété distributive.
Étape 1.3.3.2
Appliquez la propriété distributive.
Étape 1.3.3.3
Appliquez la propriété distributive.
Étape 1.3.4
Simplifiez et associez les termes similaires.
Étape 1.3.4.1
Simplifiez chaque terme.
Étape 1.3.4.1.1
Multipliez par .
Étape 1.3.4.1.2
Multipliez par .
Étape 1.3.4.1.3
Multipliez par .
Étape 1.3.4.1.4
Multipliez par .
Étape 1.3.4.2
Additionnez et .
Étape 1.4
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Laissez . Puis . Réécrivez avec et .
Étape 2.2.1.1
Laissez . Déterminez .
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.1.1.5
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Appliquez la règle de la constante.
Étape 2.3.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.5
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.6
Simplifiez
Étape 2.3.6.1
Associez et .
Étape 2.3.6.2
Simplifiez
Étape 2.3.7
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Associez et .
Étape 3.2.2.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.3
Annulez le facteur commun de .
Étape 3.2.2.1.3.1
Annulez le facteur commun.
Étape 3.2.2.1.3.2
Réécrivez l’expression.
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
Soustrayez des deux côtés de l’équation.
Étape 4
Simplifiez la constante d’intégration.